Geology of Bonaire

Last updated

The island of Bonaire began to form as part of the Lesser Antilles island arc in the past 145 million years, beginning in the Cretaceous. The island has been submerged or partially submerged for much of its existence, forming large limestone and sedimentary rock formations, atop a thick basement of volcanic rocks.

Contents

Stratigraphy and geologic history

The Washikemba Formation and Rincon Formation are the two oldest rock formations on Bonaire, both dating to the Cretaceous. The Washikemba Formation is five kilometers thick and contains basalt pillow lava formed as lava rapidly cooled in seawater, as well as submarine pyroclastic flows and some ammonite fossils in sedimentary rocks formed in a deep water environment. In addition to basalt, there is also rhyolite and basaltic andesite. Together, the formation was affected by low-grade metamorphism and primary minerals such as pyroxene, plagioclase and hornblende altered to prehnite, pumpellyite and zeolite. The Rincon Formation is a 30-meter succession of marl and calcareous sandstone outcropping in the center of the island and is faulted from the Washikemba Formation, making their exact relationship difficult to determine. It contains Maastrichtian Late Cretaceous shallow water fossils such as foraminifera, algae, gastropods, bivalves and rudists.

Cenozoic (66 million years ago-present)

The Paleocene Soebi Blanco Formation is a 400-meter thick sequence of conglomerates, sandstones and mudstones at Seroe Largo in central Bonaire. It is similar to the Midden Curacao Formation in that it contains fragments of exotic rock not found in the area, such as quartzite, gneiss and schist. Uranium-lead dating gives an age of 1.15 billion years old on zircon fragments within a granulite pebble from the formation, suggesting that it is eroded material from much older rock in South America. In other cases, fragments of Cretaceous limestone are included as well.

Outcropping southwest of Montagne is the Eocene Montagne Formation, made up of yellow, weathering limestones. A lower limestone unit contains molluscs while an upper unit includes echinoids and large foramins. The Seroe Domi Formation spans Bonaire and neighboring Curacao and Aruba. Its base is volcanic breccia but on Bonaire contains Miocene fossils not found on the other islands. The largely dolomite formation seems to have formed in a deep reef offshore environment. [1] Five limestone terrace formed during the past 2.5 million years of the Quaternary. [2]

Related Research Articles

<span class="mw-page-title-main">Geology of the Australian Capital Territory</span> Overview of the geology of the Australian Capital Territory

The geology of the Australian Capital Territory includes rocks dating from the Ordovician around 480 million years ago, whilst most rocks are from the Silurian. During the Ordovician period the region—along with most of eastern Australia—was part of the ocean floor. The area contains the Pittman Formation consisting largely of quartz-rich sandstone, siltstone and shale; the Adaminaby Beds and the Acton Shale.

<span class="mw-page-title-main">Jamanota</span> Arubas highest natural point

Jamanota is a hill situated within Aruba's Arikok National Park, reaching a height of 188 metres (617 ft) and holding the distinction of being the highest point on the island. Jamanota is a word from the Arawak language and can be explained somewhat as follows: JA or YA is spirit; MA is great or great spirit; NO is a suffix denoting a plural; TA is source. So about, Source of Great Spirits.

<span class="mw-page-title-main">Geology of Tasmania</span> Overview of the geology of Tasmania

The geology of Tasmania is complex, with the world's biggest exposure of diabase, or dolerite. The rock record contains representatives of each period of the Neoproterozoic, Paleozoic, Mesozoic and Cenozoic eras. It is one of the few southern hemisphere areas that were glaciated during the Pleistocene with glacial landforms in the higher parts. The west coast region hosts significant mineralisation and numerous active and historic mines.

Fujian is a south eastern coastal province of China. The eastern half of the province is largely covered by Jurassic Period acid volcanic rocks and Cretaceous tuffaceous sandstone. However, there are rocks of a variety of ages including the oldest around 1800 Ma. The deposits from the Triassic are predominantly on land, whereas the older ones are marine sediments.

<span class="mw-page-title-main">Geography of Curaçao</span>

Curaçao, as well as the rest of the ABC islands and Trinidad and Tobago, lies on the continental shelf of South America. It is a thin island with a generally hilly topography; the highest point is Christoffelberg 372 m (1,220 ft) in the northwest. The coastline's bays, inlets and hot springs offer a source of natural minerals, thermal conditions, and seawater used in hydrotherapy and mesotherapy, making the island one of many balneoclimateric areas in the region. Off the southeast coast lies the small, flat island of Klein Curaçao.

<span class="mw-page-title-main">Geology of the Isle of Skye</span>

The geology of the Isle of Skye in Scotland is highly varied and the island's landscape reflects changes in the underlying nature of the rocks. A wide range of rock types are exposed on the island, sedimentary, metamorphic and igneous, ranging in age from the Archaean through to the Quaternary.

<span class="mw-page-title-main">Geology of Germany</span> Overview of the geology of Germany

The geology of Germany is heavily influenced by several phases of orogeny in the Paleozoic and the Cenozoic, by sedimentation in shelf seas and epicontinental seas and on plains in the Permian and Mesozoic as well as by the Quaternary glaciations.

Nacientes del Biobío Formation is a geological formation that crops out near the uppermost reaches of Bío Bío River, in south-central Chile, and nearby areas of Argentina. The formation is made up of basalt and pyroclastic rocks and marine sedimentary rocks, such as sandstone and mudstone. Some less abundant sedimentary lithologies are conglomerate, volcaniclastic sedimentary rock. The formation is intruded by Grupo Plutónico Galletué which is of Late Jurassic to Late Cretaceous age. Further north in Chile the formation is similar to Nacientes del Teno Formation while in Argentina it is similar to Los Molles Formation and Lotena Formation.

The island of Curaçao began to form within the past 145 million years, beginning in the Cretaceous, as part of the Lesser Antilles island arc. Because the island was submerged for large parts of its history, reef environments formed atop thick layers of mafic volcanic rock, producing carbonate sedimentary rocks.

<span class="mw-page-title-main">Geology of Aruba</span>

The island of Aruba formed within the past 145 million years, beginning in the Cretaceous, as part of the Lesser Antilles island arc. The island is built on a thick sequence of volcanic rock, but also has carbonate sediment deposits because it was submerged for parts of its existence.

<span class="mw-page-title-main">Geology of Guam</span>

The geology of Guam formed as a result of mafic, felsic and intermediate composition volcanic rocks erupting below the ocean, building up the base of the island in the Eocene, between 33.9 and 56 million years ago. The island emerged above the water in the Eocene, although the volcanic crater collapsed. A second volcanic crater formed on the south of the island in the Oligocene and Miocene. In the shallow water, numerous limestone formations took shape, with thick alternating layers of volcanic material. The second crater collapsed and Guam went through a period in which it was almost entirely submerged, resembling a swampy atoll, until structural deformation slowly uplifted different parts of the island to their present topography. The process of uplift led to widespread erosion and clay formation, as well as the deposition of different types of limestone, reflecting different water depths.

<span class="mw-page-title-main">Geology of Arizona</span> Overview of the geology of Arizona

The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.

The geology of Georgia is the study of rocks, minerals, water, landforms and geologic history in Georgia. The country is dominated by the Caucasus Mountains at the junction of the Eurasian Plate and the Afro-Arabian Plate, and rock units from the Mesozoic and Cenozoic are particularly prevalent. For much of its geologic history, until the uplift of the Caucasus, Georgia was submerged by marine transgression events. Geologic research for 150 years by Georgian and Russian geologists has shed significant light on the region and since the 1970s has been augmented with the understanding of plate tectonics.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

<span class="mw-page-title-main">Geology of Afghanistan</span>

The geology of Afghanistan includes nearly one billion year old rocks from the Precambrian. The region experienced widespread marine transgressions and deposition during the Paleozoic and Mesozoic, that continued into the Cenozoic with the uplift of the Hindu Kush mountains.

<span class="mw-page-title-main">Geology of Uzbekistan</span> Geology of Uzbekistan, an west Asian nation

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

<span class="mw-page-title-main">Geology of Bulgaria</span>

The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.

The geology of Saudi Arabia includes Precambrian igneous and metamorphic basement rocks, exposed across much of the country. Thick sedimentary sequences from the Phanerozoic dominate much of the country's surface and host oil.

The geology of El Salvador is underlain by rocks dating to the Paleozoic. Prior to the Pennsylvanian, sediments deposited and were intensely deformed, intruded by granite rocks and metamorphosed. Northern Central America took shape during uplift in the Triassic, large than its current area and extending east to the Nicaragua Rise. The Cayman Ridge and Bartlet Trough formed from longitudinal faults at the crest of the uplift. Deformation in the Cretaceous brought granite intrusions, particularly in what is now Nicaragua. Much of the terrain and coastline of the country is defined by volcanoes and volcanic deposits produced from the subduction of the Cocos Plate.

<span class="mw-page-title-main">Geology and geological history of California</span> Description of the geology of California

The geology of California is highly complex, with numerous mountain ranges, substantial faulting and tectonic activity, rich natural resources and a history of both ancient and comparatively recent intense geological activity. The area formed as a series of small island arcs, deep-ocean sediments and mafic oceanic crust accreted to the western edge of North America, producing a series of deep basins and high mountain ranges.

References

  1. Jackson & Robinson (1994). "Caribbean Geology: An Introduction". University of West Indies. pp. 255–258.
  2. Alexander, C. (1961). "The marine terraces of Aruba, Bonaire, and Curaçao, Netherlands Antilles". Annals of the Association of American Geographers. 51: 102–123. doi:10.1111/j.1467-8306.1961.tb00370.x.