Golgi matrix

Last updated

The Golgi matrix is a collection of proteins involved in the structure and function of the Golgi apparatus. [1] [2] [3] The matrix was first isolated in 1994 as an amorphous collection of 12 proteins that remained associated together in the presence of detergent (which removed Golgi membranes) and 150 m M NaCl (which removed weakly associated proteins). [4] Treatment with a protease enzyme removed the matrix, which confirmed the importance of proteins for the matrix structure. [4] Modern freeze etch [5] electron microscopy (EM) clearly shows a mesh connecting Golgi cisternae and associated vesicles. [6] [7] Further support for the existence of a matrix comes from EM images showing that ribosomes are excluded from regions between and near Golgi cisternae. [8] [9] [10] [11] [12] [13]

Contents

The Golgin GMAP210 has functional regions at both ends. GMAP210c.jpg
The Golgin GMAP210 has functional regions at both ends.
The ALPS of GMAP210 binds to curved, but not flat, lipid layers GMAP210ALPSc.jpg
The ALPS of GMAP210 binds to curved, but not flat, lipid layers

Structure and function

GRASP domain alignment of GRASP55 and the GRASP homologue of Cryptococcus neoformans CnGRASP55domainsc.jpg
GRASP domain alignment of GRASP55 and the GRASP homologue of Cryptococcus neoformans
Microinjection of antibodies to GRASP65 prevents normal Golgi stack formation. GRASP65antic.jpg
Microinjection of antibodies to GRASP65 prevents normal Golgi stack formation.

The first individual protein component of the matrix was identified in 1995 as Golgin A2 (then called GM130). [14] Since then, many other golgin family proteins have been found to be in the Golgi matrix [2] and are associated with the Golgi membranes in a variety of ways. [15] [1] For example, GMAP210 (Golgi Microtubule Associated Protein 210) has an ALPS (Amphipathic Lipid-Packing Sensor) motif in the N-termal 38 amino acids and an ARF1-binding domain called GRAB (Grip-Related Arf-Binding) at the C-terminus. [16] Thus, the GRAB-domain can bind indirectly to Golgi cisternae and its ALPS motif can tether vesicles. [17] Golgins have coiled-coil domains and are thus predicted to have elongated structures [2] up to 200 nm in length. [18] Most are peripheral membrane proteins attached at one end to Golgi membranes. [2] They have flexible regions between the coiled-coil domains, which make them ideal candidates for mediating the dynamic vesicle docking to Golgi cisternae and dynamic structure of the Golgi itself. [2]

Golgi reassembly-stacking proteins are an evolutionarily conserved family of proteins in the Golgi matrix. [2] GRASP65 and GRASP55 are the 2 human GRASPs. These proteins were named from their requirement for accurate Golgi reassembly during an in vitro assay, [2] but they have also been shown to function in vivo, as shown in the accompanying figure. [19] GRASPs associate with lipid bilayers because they are myristoylated and their myristic acid residue intercalates into the lipid layer. [7] Their trans oligomerization is controlled by phosphorylation [6] and is thought to explain the fragmentation of the Golgi as required during mitosis. [7]

Components

Disease associations

References

  1. 1 2 Short B, Haas A, Barr FA (2005). "Golgins and GTPases, giving identity and structure to the Golgi apparatus". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1744 (3): 383–95. doi: 10.1016/j.bbamcr.2005.02.001 . PMID   15979508.
  2. 1 2 3 4 5 6 7 Xiang Y, Wang Y (2011). "New components of the Golgi matrix". Cell and Tissue Research. 344 (3): 365–79. doi:10.1007/s00441-011-1166-x. PMC   3278855 . PMID   21494806.
  3. Lowe, M (2011). "Structural organization of the Golgi apparatus". Current Opinion in Cell Biology. 23 (1): 85–93. doi:10.1016/j.ceb.2010.10.004. PMID   21071196.
  4. 1 2 Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G (1994). "Isolation of a matrix that binds medial Golgi enzymes". The Journal of Cell Biology. 124 (4): 405–13. doi:10.1083/jcb.124.4.405. PMC   2119912 . PMID   8106542.
  5. Heuser JE (2011). "The origins and evolution of freeze-etch electron microscopy". Journal of Electron Microscopy. 60 (Suppl 1): S3–29. doi:10.1093/jmicro/dfr044. PMC   3202940 . PMID   21844598.
  6. 1 2 Zhang, X. and Wang, Y. "Golgi structure and the role of GRASP65 in Golgi stack formation" . Retrieved 27 May 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. 1 2 3 Zhang, X. and Wang, Y., Front Cell Dev Biol. 2015; 3: 84. Published online 2016 Jan 6. doi: 10.3389/fcell.2015.00084 (2015). "GRASPs in Golgi Structure and Function". Frontiers in Cell and Developmental Biology. 3: 84. doi: 10.3389/fcell.2015.00084 . PMC   4701983 . PMID   26779480.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  8. Fig. 14 in Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003). "Tomographic Evidence for Continuous Turnover of Golgi Cisternae in Pichia pastoris". Molecular Biology of the Cell. 14 (6): 2277–91. doi:10.1091/mbc.e02-10-0697. PMC   260745 . PMID   12808029.
  9. Staehelin LA; Kang BH. "Electron tomographic model of a Golgi stack and its encompassing, ribosome-excluding scaffold (Golgi matrix)". plantphysiol.org. American Society of Plant Biologists. Retrieved 27 May 2017.
  10. Staehelin LA; Kang BH. "Transfer of COPII vesicles and their scaffolds to the cis-Golgi matrix". plantphysiol.org. American Society of Plant Biologists. Retrieved 27 May 2017.
  11. Lucocq JM, Pryde JG, Berger EG, Warren G (1987). "A mitotic form of the Golgi apparatus in HeLa cells". The Journal of Cell Biology. 104 (4): 865–74. doi:10.1083/jcb.104.4.865. PMC   2114436 . PMID   3104351.
  12. Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003). "Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris". Molecular Biology of the Cell. 14 (6): 2277–91. doi:10.1091/mbc.E02-10-0697. PMC   260745 . PMID   12808029.
  13. Staehelin LA, Kang BH (2008). "Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography". Plant Physiology. 147 (4): 1454–68. doi:10.1104/pp.108.120618. PMC   2492626 . PMID   18678738.
  14. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995). "Characterization of a cis-Golgi matrix protein, GM130". The Journal of Cell Biology. 131 (6 Pt 2): 1715–26. doi:10.1083/jcb.131.6.1715. PMC   2120691 . PMID   8557739.
  15. Benjamin Short, Alexander Haas, Francis A. Barr. "Golgins associate with Golgi membranes in a variety of ways". ars.els-cdn.com/. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. Retrieved 31 May 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  16. Cardenas J, Rivero S, Goud B, Bornens M, Rios RM (2009). "Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms". BMC Biology. 7: 56. doi: 10.1186/1741-7007-7-56 . PMC   2744908 . PMID   19715559.
  17. Doucet CM, Esmery N, de Saint-Jean M, Antonny B (2015). "Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone". PLOS ONE. 10 (9) e0137965. Bibcode:2015PLoSO..1037965D. doi: 10.1371/journal.pone.0137965 . PMC   4569407 . PMID   26366573.
  18. Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008). "Asymmetric tethering of flat and curved lipid membranes by a golgin". Science. 320 (5876): 670–3. Bibcode:2008Sci...320..670D. doi:10.1126/science.1155821. PMID   18451304. S2CID   6619427.
  19. Wang Y, Wei JH, Bisel B, Tang D, Seemann J (2008). "Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport". PLOS ONE. 3 (2) e1647. Bibcode:2008PLoSO...3.1647W. doi: 10.1371/journal.pone.0001647 . PMC   2249924 . PMID   18297130.
  20. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS (2007). "Mutation of an A-kinase-anchoring protein causes long-QT syndrome". Proceedings of the National Academy of Sciences of the United States of America. 104 (52): 20990–5. Bibcode:2007PNAS..10420990C. doi: 10.1073/pnas.0710527105 . PMC   2409254 . PMID   18093912.
  21. Kolehmainen J, Black GC, Saarinen A, et al. (2003). "Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport". Am. J. Hum. Genet. 72 (6): 1359–69. doi:10.1086/375454. PMC   1180298 . PMID   12730828.
  22. Smits P, Bolton AD, Funari V, Hong M, Boyden ED, Lu L, Manning DK, Dwyer ND, Moran JL, Prysak M, Merriman B, Nelson SF, Bonafé L, Superti-Furga A, Ikegawa S, Krakow D, Cohn DH, Kirchhausen T, Warman ML, Beier DR (2010). "Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210". The New England Journal of Medicine. 362 (3): 206–16. doi:10.1056/NEJMoa0900158. PMC   3108191 . PMID   20089971.
  23. Shamseldin HE, Bennett AH, Alfadhel M, Gupta V, Alkuraya FS (2016). "GOLGA2, encoding a master regulator of golgi apparatus, is mutated in a patient with a neuromuscular disorder". Human Genetics. 135 (2): 245–51. doi:10.1007/s00439-015-1632-8. PMC   4975006 . PMID   26742501.
  24. Hennies HC, Kornak U, Zhang H, et al. (December 2008). "Gerodermia osteodysplastica is caused by mutations in SCL1BP1, a Rab-6 interacting golgin". Nat. Genet. 40 (12): 1410–2. doi:10.1038/ng.252. PMC   3122266 . PMID   18997784.