HK3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | HK3 , HKIII, HXK3, hexokinase 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 142570; MGI: 2670962; HomoloGene: 55633; GeneCards: HK3; OMA:HK3 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Hexokinase III, also known as hexokinase C, is an enzyme which in humans is encoded by the Hk3 gene on chromosome 5. [5] [6] Hexokinases phosphorylate glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways. Similar to hexokinases I and II, this allosteric enzyme is inhibited by its product glucose-6-phosphate. [provided by RefSeq, Apr 2009] [7]
Hexokinase III is one of four homologous hexokinase isoforms in mammalian cells. [8] [9] [10] [11] This protein has a molecular mass of 100 kDa and is composed of two highly similar 50-kDa domains at its N- and C-terminals. [9] [10] [11] [12] [13] This high similarity, along with the[ clarification needed ] and the existence of a 50-kDa hexokinase (Glucokinase, or hexokinase IV), suggests that the 100-kDa hexokinases originated from a 50-kDa precursor via gene duplication and tandem ligation. [13] [14] [10] As with hexokinase I, only the C-terminal domain possesses catalytic ability, whereas the N-terminal domain is predicted to contain glucose and glucose 6-phosphate binding sites, as well as a 32-residue region essential for proper protein folding. [9] [10] Moreover, the catalytic activity depends on the interaction between the two terminal domains. [10] Unlike hexokinase I and hexokinase II, hexokinase III lacks a mitochondrial binding sequence at its N-terminal. [10] [15] [16]
As a cytoplasmic isoform of hexokinase and a member of the sugar kinase family, hexokinase III catalyzes the rate-limiting and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to glucose 6-phosphate. [10] [11] [17] Physiological levels of glucose 6-phosphate can regulate this process by inhibiting hexokinase III as negative feedback, though inorganic phosphate can relieve glucose 6-phosphate inhibition. [9] [13] Inorganic phosphate can also directly regulate hexokinase III, and the double regulation may better suit its anabolic functions. [9] By phosphorylating glucose, hexokinase III effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism. [9] [10] [12] [13] Compared to hexokinase I and hexokinase II, hexokinase III possesses a higher affinity for glucose and will bind the substrate even at physiological levels, though this binding may be attenuated by intracellular ATP. [9] Uniquely, hexokinase III can be inhibited by glucose at high concentrations. [15] [14] hexokinase III is also less sensitive to glucose 6-phosphate inhibition. [9] [15]
Despite its lack of mitochondrial association, hexokinase III also functions to protect the cell against apoptosis. [10] [17] Overexpression of hexokinase III has resulted in increased ATP levels, decreased reactive oxygen species (ROS) production, attenuated reduction in the mitochondrial membrane potential, and enhanced mitochondrial biogenesis. Overall, hexokinase III may promote cell survival by controlling ROS levels and boosting energy production. Currently, only hypoxia is known to induce hexokinase III expression through a HIF-dependent pathway. The inducible expression of hexokinase III indicates its adaptive role in metabolic responses to changes in the cellular environment. [10]
In particular, Hk3 is ubiquitously expressed in tissues, albeit at relatively low abundance. [9] [10] [13] [14] Higher abundance levels have been cited in lung, kidney, and liver tissue. [9] [10] [15] Within cells, hexokinase III localizes to the cytoplasm and putatively binds the perinuclear envelope. [10] [15] [16] hexokinase III is the predominant hexokinase in myeloid cells, particularly granulocytes. [18]
Hexokinase III is found to be overexpressed in malignant follicular thyroid nodules. In conjunction with cyclin A and galectin-3, hexokinase III could be used as diagnostic biomarker to screen for malignancy in patients. [17] [19] Meanwhile, hexokinase III was found to be repressed in acute myeloid leukemia (AML) blast cells and acute promyelocytic leukemia (APL) patients. The transcription factor PU.1 is known to directly activate transcription of the antiapoptotic BCL2A1 gene or inhibit transcription of the p53 tumor suppressor to promote cell survival, and is proposed to also directly activate Hk3 transcription during neutrophil differentiation to support short-term cell survival of mature neutrophils. [16] Regulators repressing hexokinase III expression in AML include PML-RARA and CEBPA. [16] [18] Regarding acute lymphoblastic leukemia (ALL), functional enrichment analysis revealed Hk3 as a key gene and suggests that hexokinase III shares antiapoptotic function with HK1 and HK2. [17]
The HK3 promoter is known to interact with PU.1, [16] PML-RARA, [16] and CEBPA. [18]
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.
In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.
Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.
A hexokinase is an enzyme that irreversibly phosphorylates hexoses, forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokinase possesses the ability to transfer an inorganic phosphate group from ATP to a substrate.
Glucokinase is an enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Glucokinase occurs in cells in the liver and pancreas of humans and most other vertebrates. In each of these organs it plays an important role in the regulation of carbohydrate metabolism by acting as a glucose sensor, triggering shifts in metabolism or cell function in response to rising or falling levels of glucose, such as occur after a meal or when fasting. Mutations of the gene for this enzyme can cause unusual forms of diabetes or hypoglycemia.
The glucokinase regulatory protein (GKRP) also known as glucokinase regulator (GCKR) is a protein produced in hepatocytes. GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location of this key enzyme of glucose metabolism.
Glucose-6-phosphate isomerase (GPI), alternatively known as phosphoglucose isomerase/phosphoglucoisomerase (PGI) or phosphohexose isomerase (PHI), is an enzyme that in humans is encoded by the GPI gene on chromosome 19. This gene encodes a member of the glucose phosphate isomerase protein family. The encoded protein has been identified as a moonlighting protein based on its ability to perform mechanistically distinct functions. In the cytoplasm, the gene product functions as a glycolytic enzyme that interconverts glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P). Extracellularly, the encoded protein functions as a neurotrophic factor that promotes survival of skeletal motor neurons and sensory neurons, and as a lymphokine that induces immunoglobulin secretion. The encoded protein is also referred to as autocrine motility factor (AMF) based on an additional function as a tumor-secreted cytokine and angiogenic factor. Defects in this gene are the cause of nonspherocytic hemolytic anemia, and a severe enzyme deficiency can be associated with hydrops fetalis, immediate neonatal death and neurological impairment. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2014]
The germ cell nuclear factor (GCNF), also known as RTR or NR6A1, is a protein that in humans is encoded by the NR6A1 gene. GCNF is a member of the nuclear receptor family of intracellular transcription factors.
Hexokinase I, also known as hexokinase A and HK1, is an enzyme that in humans is encoded by the HK1 gene on chromosome 10. Hexokinases phosphorylate glucose to produce glucose-6-phosphate (G6P), the first step in most glucose metabolism pathways. This gene encodes a ubiquitous form of hexokinase which localizes to the outer membrane of mitochondria. Mutations in this gene have been associated with hemolytic anemia due to hexokinase deficiency. Alternative splicing of this gene results in five transcript variants which encode different isoforms, some of which are tissue-specific. Each isoform has a distinct N-terminus; the remainder of the protein is identical among all the isoforms. A sixth transcript variant has been described, but due to the presence of several stop codons, it is not thought to encode a protein. [provided by RefSeq, Apr 2009]
CCAAT/enhancer-binding protein alpha is a protein encoded by the CEBPA gene in humans. CCAAT/enhancer-binding protein alpha is a transcription factor involved in the differentiation of certain blood cells. For details on the CCAAT structural motif in gene enhancers and on CCAAT/Enhancer Binding Proteins see the specific page.
In enzymology, a polyphosphate-glucose phosphotransferase is an enzyme that catalyzes the chemical reaction.
Aldo-keto reductase family 1, member B1 (AKR1B1) is an gene in humans that encodes the enzyme aldose reductase. It is a reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent enzyme catalyzing the reduction of various aldehydes and ketones to the corresponding alcohol. The involvement of AKR1B1 in oxidative stress diseases, cell signal transduction, and cell proliferation process endows AKR1B1 with potential as a therapeutic target.
Pyruvate dehydrogenase lipoamide kinase isozyme 4, mitochondrial (PDK4) is an enzyme that in humans is encoded by the PDK4 gene. It codes for an isozyme of pyruvate dehydrogenase kinase.
Alcohol dehydrogenase [NADP+] also known as aldehyde reductase or aldo-keto reductase family 1 member A1 is an enzyme that in humans is encoded by the AKR1A1 gene. AKR1A1 belongs to the aldo-keto reductase (AKR) superfamily. It catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols and catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Mutations in the AKR1A1 gene has been found associated with non-Hodgkin's lymphoma.
Aspartate aminotransferase, mitochondrial is an enzyme that in humans is encoded by the GOT2 gene. Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and Kreb's cycle. Also, GOT2 is a major participant in the malate-aspartate shuttle, which is a passage from the cytosol to the mitochondria. The two enzymes are homodimeric and show close homology. GOT2 has been seen to have a role in cell proliferation, especially in terms of tumor growth.
N-acetyl-D-glucosamine kinase is an enzyme that in humans is encoded by the NAGK gene.
AMP deaminase 3 is an enzyme that in humans is encoded by the AMPD3 gene.
Phosphoacetylglucosamine mutase is an enzyme that in humans is encoded by the PGM3 gene.
Hexokinase II, also known as Hexokinase B and HK2, is an enzyme which in humans is encoded by the HK2 gene on chromosome 2. Hexokinases phosphorylate glucose to produce glucose 6-phosphate, the first step in most glucose metabolism pathways. Hexokinase II is the predominant hexokinase form found in skeletal muscle. It localizes to the outer membrane of mitochondria. Expression of the HK2 gene is insulin-responsive, and studies in rat suggest that it is involved in the increased rate of glycolysis seen in rapidly growing cancer cells. [provided by RefSeq, Apr 2009]
Glycogenin-1 is an enzyme that is involved in the biosynthesis of glycogen. It is capable of self-glucosylation, forming an oligosaccharide primer that serves as a substrate for glycogen synthase. This is done through an inter-subunit mechanism. It also plays a role in glycogen metabolism regulation. Recombinant human glycogenin-1 was expressed in E. coli and purified using conventional chromatography techniques.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.