Hollebeke Formation

Last updated
Borsato Formation
Stratigraphic range: Frasnian
~382–373  Ma
Type Formation
Unit of Fairholme Group
Underlies Borsato Formation
Overlies Ordovician or older formations
ThicknessUp to about 240 m (790 ft) [1]
Lithology
Primary Limestone, dolomite
Location
Coordinates 49°23′56″N114°34′05″W / 49.39889°N 114.56806°W / 49.39889; -114.56806 (Hollebeke Formation) Coordinates: 49°23′56″N114°34′05″W / 49.39889°N 114.56806°W / 49.39889; -114.56806 (Hollebeke Formation)
RegionFlag of British Columbia.svg  British Columbia
Flag of Alberta.svg  Alberta
CountryFlag of Canada (Pantone).svg  Canada
Extent Western Canada Sedimentary Basin & southern Rocky Mountains
Type section
Named forMount Hollebeke
Named byR.A. Price
Year defined1965 [2]
Canada relief map 2.svg
Gold pog.svg
Hollebeke Formation (Canada)
Alberta County Point Locator.svg
Gold pog.svg
Hollebeke Formation (Alberta)

The Hollebeke Formation is a stratigraphic unit of Late Devonian (Frasnian) age. It is present on the western edge of the Western Canada Sedimentary Basin in the southern Rocky Mountains of Alberta and British Columbia. It consists of carbonate rocks, and was named for Mount Hollebeke in the Flathead Range near North Kootenay Pass by R.A. Price in 1965. [1] [2]

Contents

Thickness and lithology

The Hollebeke Formation was deposited in a marine environment and ranges in thickness from about 100 to 240 m (328 to 787 ft). The lower part consists of locally silty or argillaceous dolomite and limestone. The upper part is very fine crystalline limestone. [1] [2]

Distribution and relationship to other units

The Hollebeke Formation is present in Rocky Mountains of southeastern British Columbia and southwestern Alberta, west of the Lewis Thrust Fault and south of about 50°N latitude. It unconformably overlies Ordovician or Cambrian formations, or the late Precambrian Purcell Supergroup, depending on the location. It is overlain by the Borsato Formation. [1] [2] [3]

Related Research Articles

Nikanassin Formation

The Nikanassin Formation is a stratigraphic unit of Late Jurassic (Portlandian) to Early Cretaceous (Barremian) age. It is present along the western edge of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. Its name was first proposed by D.B. Dowling in 1909 (Coal Fields South of Grand Trunk Pacific Railway, in the foothills of the Rocky Mountain, Alberta Page 140 paragraph 4 " to this it is proposed to give the name Nikanassin, from the Cree word meaning outer range" Also it is noted on the map by D.B. Dowling.(Geological Survey of Canada. Incorrect info follows: It was named by B.R. MacKay in 1929 for the Nikanassin Range of the front-central ranges of the Canadian Rockies. Mackay did not designate a type locality for the formation, although he described outcrops near the hamlet of Brûlé, north of the Yellowhead Highway outside of Jasper National Park.

Cadomin Formation

The Cadomin Formation is a stratigraphic unit of Early Cretaceous age in the western part of the Western Canada Sedimentary Basin. It is extends from southeastern British Columbia through western Alberta to northeastern British Columbia, and it contains significant reservoirs of natural gas in some areas. It was named after the mining town of Cadomin, which is an acronym of "Canadian Dominion Mining".

Fernie Formation

The Fernie Formation is a stratigraphic unit of Jurassic age. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914.

Palliser Formation

The Palliser Formation is a stratigraphic unit of Late Devonian (Famennian) age in the Western Canada Sedimentary Basin. It is a thick sequence of limestone and dolomitic limestone that is present in the Canadian Rockies and foothills of western Alberta. Tall cliffs formed of the Palliser Formation can be seen throughout Banff and Jasper National Parks.

The Liard Formation is a stratigraphic unit of Middle Triassic to Late Triassic age in the Western Canadian Sedimentary Basin that is present in northeastern British Columbia. It takes its name from the Liard River, and was first described from outcrops on the southern bank of that river, near Hell Gate Rapids in the Grand Canyon of the Liard, by E.D. Kindle in 1946.

Cathedral Formation

The Cathedral Formation is a stratigraphic unit in the southern Canadian Rockies of Alberta and British Columbia, on the western edge of the Western Canada Sedimentary Basin. It is a thick sequence of carbonate rocks of Middle Cambrian age. It was named for Cathedral Mountain in Yoho National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils.

Gog Group

The Gog Group is a stratigraphic unit in the Western Canada Sedimentary Basin. It is present in the western main ranges of the Canadian Rockies in Alberta and British Columbia, and in the Cariboo Mountains and in the central Purcell Mountains in southwestern British Columbia. It was named by C.F. Deiss in 1940 for a type locality near Mount Assiniboine.

The Alexo Formation a stratigraphic unit of Late Devonian age. It is present on the western edge of the Western Canada Sedimentary Basin in the central Rocky Mountains and foothills of Alberta. The formation consists primarily of dolomite. It is locally fossiliferous and includes remains of marine animals such as brachiopods and conodonts.

Cairn Formation

The Cairn Formation is a geologic formation of Late Devonian (Frasnian) age in the Western Canada Sedimentary Basin. It was named for the Cairn River near its junction with the Southesk River in Jasper National Park by D.J. McLaren in 1955.

The Mount Hawk Formation is a stratigraphic unit of Late Devonian age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains and foothills of Alberta. It consists primarily of limestone and mudstone, and was named for Hawk Mountain in Jasper National Park by R. de Wit and D.J. McLaren in 1950.

The Simla Formation is a stratigraphic unit of Late Devonian age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains and foothills of west-central Alberta and east-central British Columbia. It consists primarily of carbonate rocks and siltstone, and was named for Mount Simla in northern Jasper National Park by D.J. McLaren and E.W. Mountjoy in 1962.

The Southesk Formation is a stratigraphic unit of Late Devonian age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains and foothills of Alberta and southeastern British Columbia. It was named for the Southesk River in Jasper National Park by D.J. McLaren in 1955.

Beaverfoot Formation

The Beaverfoot Formation is a stratigraphic unit of Late Ordovician to Early Silurian (Llandovery) age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains of British Columbia and Alberta, and the Purcell Mountains of British Columbia. It consists of carbonate rocks, and was named for the Beaverfoot Range at Pedley Pass southeast of Golden, British Columbia by L.D. Burling in 1922.

The Fairholme Group is a stratigraphic unit of Late Devonian (Frasnian) age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains and foothills of Alberta and British Columbia. It was named for the Fairholme Range near Exshaw in the Canadian Rockies by H.H. Beach in 1943.

The Mount Whyte Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies and the adjacent southwestern Alberta plains. It was deposited during Middle Cambrian time and consists of shale interbedded with other siliciclastic rock types and limestones. It was named for Mount Whyte in Banff National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils, and it includes several genera of fossil trilobites.

The Purcell Supergroup is composed primarily of argillites, carbonate rocks, quartzites, and mafic igneous rocks of late Precambrian (Mesoproterozoic) age. It is present in an area of about 15,000 km2 in southwestern Alberta and southeastern British Columbia, Canada, and it extends into the northwestern United States where it is called the Belt Supergroup. It was named for the Purcell Mountains of British Columbia by R.A. Daly in 1912. Fossil stromatolites and algal structures are common in some of the Purcell Supergroup rocks, and the Sullivan ore body at Kimberley, British Columbia, a world-class deposit of lead, zinc, and silver, lies within the Alderidge Formation in the lower part of the Purcell.

The Kananaskis Formation is a geologic formation that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies of western Alberta. Named after the Kananaskis Range near Banff, it was deposited during the Late Pennsylvanian sub-period of the Carboniferous period. Some of its strata host fossils of marine invertebrates.

Borsato Formation

The Borsato Formation is a stratigraphic unit of Late Devonian (Frasnian) age. It is present on the western edge of the Western Canada Sedimentary Basin in the southern Rocky Mountains of Alberta and British Columbia. It consists of dolomite and was named for Mount Borsato in the Flathead Range near North Kootenay Pass by R.A. Price in 1965.

The Naiset Formation is a stratigraphic unit of Middle Cambrian age. It is present on the western edge of the Western Canada Sedimentary Basin in the southern Rocky Mountains of British Columbia. It consists primarily of siliciclastic rocks, and was named for Naiset Point near Mount Assiniboine by C.E. Deiss in 1940.


The Mount Wilson Formation is a stratigraphic unit of Late Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains of Alberta and British Columbia. It consists of quartz sandstone, and was named for the Mount Wilson in Banff National Park by C.D. Walcott in 1923.

References

  1. 1 2 3 4 Glass, D.J. (editor) 1997. Lexicon of Canadian Stratigraphy, vol. 4, Western Canada including eastern British Columbia, Alberta, Saskatchewan and southern Manitoba, p. 579. Canadian Society of Petroleum Geologists, Calgary, 1423 p. on CD-ROM. ISBN   0-920230-23-7
  2. 1 2 3 4 Price, R.A., 1965. Flathead map-area, British Columbia and Alberta. Geological Survey of Canada, Memoir 336.
  3. Alberta Geological Survey. "Alberta Table of Formations, May 2019" (PDF). Alberta Energy Regulator. Retrieved 24 March 2020.