Pika Formation

Last updated
Pika Formation
Stratigraphic range: Middle Cambrian
~509–500  Ma
CambrianStromatolites.jpg
Stromatolites in the Pika Formation near Helen Lake, Banff National Park, Canada
Type Formation
Underlies Arctomys Formation, Deadwood Formation, or Sullivan Formation
Overlies Eldon Formation, Titkana Formation, or Earlie Formation
ThicknessUp to 361 metres (1,184 ft) [1]
Lithology
Primary Calcareous mudstone
Other Limestone, dolomite
Location
Coordinates 51°29′40″N116°06′05″W / 51.49444°N 116.10139°W / 51.49444; -116.10139 (Pika Formation) Coordinates: 51°29′40″N116°06′05″W / 51.49444°N 116.10139°W / 51.49444; -116.10139 (Pika Formation)
Region Canadian Rockies
CountryFlag of Canada (Pantone).svg  Canada
Type section
Named for Pika Peak
Named byC.F. Deiss, 1939 [2]

The Pika Formation is a stratigraphic unit of Middle Cambrian age that is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. [3] It was named for Pika Peak near Lake Louise in Banff National Park by C.F. Deiss in 1939. [2] It is fossiliferous and preserves several genera of trilobites. [4] Outcrops of the Pika Formation can be seen in Banff and Jasper National Parks. [5]

Contents

Lithology and deposition

The Pika Formation consists primarily of dark-weathering, thin-bedded calcareous mudstone with thin dolomitized partings. There are minor intervals of shale near the base. [1] [3] The Pika was deposited in shallow marine environments along the western margin of the North American Craton during Middle Cambrian time. [3] [4] [6] [7]

Distribution and stratigraphic relationships

The Pika Formation is present in the Rocky Mountains of Alberta and British Columbia, from south of Mount Assiniboine to the Kakwa area in the north. It thickens westward, reaching a maximum thickness of about 361 metres (1,184 feet) near the Chaba River, and thins to zero in the subsurface of the Alberta plains. It is in gradational contact with the underlying Eldon Formation in the south, Titkana Formation in the north, and the Earlie Formation in the east. In the mountains it is overlain by the Arctomys Formation; the contact is abrupt and may be unconformable. In the plains to the east it is unconformably overlain by the Sullivan Formation or, farther east, by the Deadwood Formation. [1] [3] [8]

Related Research Articles

The Lynx Formation or Lynx Group is a stratigraphic unit of Late Cambrian (Dresbachian) age in the Western Canada Sedimentary Basin. It is present in the Canadian Rockies of Alberta and British Columbia. It was originally described as the Lynx Formation by Charles Doolittle Walcott in 1913, based on and named for outcrops on the slopes of Lynx Mountain on the continental divide east of Mount Robson. It was subdivided into five formations and elevated to group status by J.D. Aitken and R.G. Greggs in 1967. The name Lynx Formation continues to be used in areas where some or all of the subdivisions cannot be distinguished. All of the formations in the Lynx Group include fossil trilobites and some contain the stromatolite Collenia.

Cathedral Formation

The Cathedral Formation is a stratigraphic unit in the southern Canadian Rockies of Alberta and British Columbia, on the western edge of the Western Canada Sedimentary Basin. It is a thick sequence of carbonate rocks of Middle Cambrian age. It was named for Cathedral Mountain in Yoho National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils.

Deadwood Formation

The Deadwood Formation is a geologic formation of the Williston Basin and Western Canada Sedimentary Basin. It is present in parts of North and South Dakota and Montana in the United States, and in parts of Alberta, Saskatchewan, and southwestern corner of Manitoba in Canada. It is of Late Cambrian to Early Ordovician age and was named for exposures in Whitewood Creek near Deadwood, South Dakota. It is a significant aquifer in some areas, and its conglomerates yielded significant quantities of gold in the Black Hills of South Dakota.

Gog Group

The Gog Group is a stratigraphic unit in the Western Canada Sedimentary Basin. It is present in the western main ranges of the Canadian Rockies in Alberta and British Columbia, and in the Cariboo Mountains and in the central Purcell Mountains in southwestern British Columbia. It was named by C.F. Deiss in 1940 for a type locality near Mount Assiniboine.

Flume Formation

The Flume Formation is a geologic formation in the Western Canada Sedimentary Basin in Alberta, Canada. It was deposited as an extensive carbonate platform along the western edge of the basin during Late Devonian (Frasnian) time and the reefs of the Cairn Formation subsequently developed on it.

Yahatinda Formation

The Yahatinda Formation is a geologic formation of Middle Devonian (Givetian) age in the southwestern part of the Western Canada Sedimentary Basin in the mountains of southwestern Alberta. Its type locality lies the on the eastern face of Wapiti Mountain above Ya-Ha-Tinda Ranch at the eastern edge of Banff National Park. The Yahatinda contains a variety of Devonian fossils.

Beaverfoot Formation

The Beaverfoot Formation is a stratigraphic unit of Late Ordovician to Early Silurian (Llandovery) age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains of British Columbia and Alberta, and the Purcell Mountains of British Columbia. It consists of carbonate rocks, and was named for the Beaverfoot Range at Pedley Pass southeast of Golden, British Columbia by L.D. Burling in 1922.

The Outram Formation is a stratigraphic unit of Early Ordovician age that is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Mount Outram in Banff National Park by J.D. Aitken and B.S. Norford in 1967. The Outram Formation is fossiliferous and includes remains of trilobites and other marine invertebrates, as well as stromatolites and thrombolites.

The Skoki Formation is a stratigraphic unit of Early to Middle Ordovician age that is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Skoki Mountain near Lake Louise in Banff National Park by Charles Doolittle Walcott in 1928. The Skoki Formation is fossiliferous and includes remains of brachiopods and other marine invertebrates, as well as conodonts and oncolites.

The Survey Peak Formation is a stratigraphic unit of latest Cambrian to earliest Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Survey Peak near Mount Erasmus in Banff National Park by J.D. Aitken and B.S. Norford in 1967. The Survey Peak Formation is fossiliferous and includes remains of trilobites and other marine invertebrates, as well as conodonts, stromatolites, and thrombolites.

The Mount Whyte Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies and the adjacent southwestern Alberta plains. It was deposited during Middle Cambrian time and consists of shale interbedded with other siliciclastic rock types and limestones. It was named for Mount Whyte in Banff National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils, and it includes several genera of fossil trilobites.

The Kananaskis Formation is a geologic formation that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies of western Alberta. Named after the Kananaskis Range near Banff, it was deposited during the Late Pennsylvanian sub-period of the Carboniferous period. Some of its strata host fossils of marine invertebrates.

Eldon Formation Geologic formation in Canada

The Eldon Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies of southwestern Alberta and southeastern British Columbia. It is a thick sequence of massive, cliff-forming limestones and dolomites that was named for Eldon Switch on the Canadian Pacific Railway near Castle Mountain in Banff National Park by Charles Doolittle Walcott, who discovered the Burgess Shale fossils. The Eldon Formation was deposited during Middle Cambrian time, and it includes fossil stromatolites. The Eldon forms the scenic cliffs at the top of Castle Mountain, and can also be seen at Mount Yamnuska and other mountains in Banff and Yoho National Parks.

The Arctomys Formation is a stratigraphic unit of late Middle Cambrian age. It is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Arctomys Peak near Mount Erasmus in Banff National Park by Charles Doolittle Walcott in 1920. Outcrops of the Arctomys can be seen in Banff and Jasper National Parks.

The Titkana Formation is a stratigraphic unit of Middle Cambrian age that is present on the western edge of the Western Canada Sedimentary Basin in the northern Canadian Rockies of Alberta and British Columbia. It was named for Titkana Peak near Mount Robson by Charles Doolittle Walcott in 1913. The Titkana Formation is generally unfossiliferous.

The Snake Indian Formation is a stratigraphic unit of Middle Cambrian age that is present on the western edge of the Western Canada Sedimentary Basin in the northern Canadian Rockies of Alberta and British Columbia. It was named for Snake Indian River in Jasper National Park by E.W. Montjoy and J.D. Aitken in 1978. The type locality was established on Chetamon Mountain.

The Earlie Formation is a stratigraphic unit of Middle Cambrian age in the Western Canada Sedimentary Basin that is present beneath the plains of Alberta and eastern Saskatchewan. It was named for Earlie Lake in the County of Vermilion River, Alberta, by D.C. Pugh in 1971, who described the type section based on data from an oil well drilled in that area.

The Naiset Formation is a stratigraphic unit of Middle Cambrian age. It is present on the western edge of the Western Canada Sedimentary Basin in the southern Rocky Mountains of British Columbia. It consists primarily of siliciclastic rocks, and was named for Naiset Point near Mount Assiniboine by C.E. Deiss in 1940.


The Mount Wilson Formation is a stratigraphic unit of Late Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in the Rocky Mountains of Alberta and British Columbia. It consists of quartz sandstone, and was named for the Mount Wilson in Banff National Park by C.D. Walcott in 1923.


The Owen Creek Formation is a stratigraphic unit of Middle Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It consists primarily of dolomite and was named for Owen Creek near Mount Wilson in Banff National Park by B.S. Norford in 1969.

References

  1. 1 2 3 Glass, D.J. (editor) 1997. Lexicon of Canadian Stratigraphy, vol. 4, Western Canada including eastern British Columbia, Alberta, Saskatchewan and southern Manitoba. Canadian Society of Petroleum Geologists, Calgary, 1423 p. on CD-ROM. ISBN   0-920230-23-7.
  2. 1 2 Deiss, C.F. 1939. Cambrian formations of southwestern Alberta and southeastern British Columbia. Geological Society of America Bulletin, vol. 50, p. 951-1019.
  3. 1 2 3 4 Slind, O.L., Andrews, G.D., Murray, D.L., Norford, B.S., Paterson, D.F., Salas, C.J., and Tawadros, E.E., Canadian Society of Petroleum Geologists and Alberta Geological Survey (1994). "The Geological Atlas of the Western Canada Sedimentary Basin (Mossop, G.D. and Shetsen, I., compilers), Chapter 8: Middle Cambrian and Early Ordovician Strata of the Western Canada Sedimentary Basin". Archived from the original on 2016-07-01. Retrieved 2018-07-13.CS1 maint: multiple names: authors list (link)
  4. 1 2 Melzak, A. and Westrop, S.R. 1994. Mid-Cambrian (Marjuman) from the Pika Formation, southern Canadian Rocky Mountains, Alberta. Canadian Journal of Earth Sciences, vol. 31, p. 969-985.
  5. Leckie, D.A. 2017. Rocks, ridges and rivers – Geological wonders of Banff, Yoho, and Jasper National Parks. Brokenpoplars, Calgary, Alberta, 217 pp. ISBN   978-0-9959082-0-8.
  6. Aitken, J.D. 1966. Middle Cambrian to Middle Ordovician cyclic sedimentation, southern Rocky Mountains of Alberta. Bulletin of Canadian Petroleum Geology, vol. 14, no. 6, p. 405-441.
  7. Aitken, J.D. 1997. Stratigraphy of the Middle Cambrian platformal succession, southern Rocky Mountains. Geological Survey of Canada, Bulletin 398, 322 p.
  8. Alberta Geological Survey. "Alberta Table of Formations, May 2019" (PDF). Alberta Energy Regulator. Retrieved 24 March 2020.