Cathedral Formation

Last updated
Cathedral Formation
Stratigraphic range: Middle Cambrian
~509–500  Ma
WalcottQuarry080509.jpg
The Cathedral Formation and Cathderal Escarpment form the grey mountain in the distance, with the Burgess Shale and Walcott Quarry in the foreground.
Type Formation
Underlies Stephen Formation
Overlies Mount Whyte Formation, Naiset Formation
ThicknessUp to 610 metres (2000 ft) [1]
Lithology
Primary Limestone, Dolomite
Other Calcareous mudstone
Location
Coordinates 51°23′47″N116°23′25″W / 51.39639°N 116.39028°W / 51.39639; -116.39028 (Cathedral Formation) Coordinates: 51°23′47″N116°23′25″W / 51.39639°N 116.39028°W / 51.39639; -116.39028 (Cathedral Formation)
Region Canadian Rockies
CountryFlag of Canada (Pantone).svg  Canada
Type section
Named for Cathedral Mountain
Named by Charles Doolittle Walcott, 1908 [2]

The Cathedral Formation is a stratigraphic unit in the southern Canadian Rockies of Alberta and British Columbia, on the western edge of the Western Canada Sedimentary Basin. It is a thick sequence of carbonate rocks of Middle Cambrian age. It was named for Cathedral Mountain in Yoho National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils. [1] [3]

Contents

The Cathedral Formation includes fossil stromatolites, oncolites, and other algal remains, as well as a few shale beds with trilobites. [1] The Cathedral escarpment on its westernmost edge is thought to have played a major role in the deposition and preservation of the Burgess shale fossils. [4]

Lithology and deposition

The Cathedral Formation consists primarily of massive, cliff-forming carbonate rocks. It was originally deposited as limestone, much of which may have been secreted by marine algae. [4] Deposition took place in shallow water on an extensive algal reef or carbonate platform that had developed along the western margin of the North American Craton. [3] [4] [5] [6] The limestone was subsequently altered to dolomite in many areas. The formation also includes several beds of shale with fossil trilobites [1] that establish its age and stratigraphic relationships by biostratigraphy. [7] [8]

Cathedral escarpment

The Cathedral escarpment is an abrupt cliff on the westernmost edge of the Cathedral Formation. It was probably a submarine cliff that marked the edge of the original carbonate platform. It is approximately 100 to 300 metres (330 to 1000 feet) high and extends for about 100 kilometres (62 miles) running through and around Yoho National Park, although only small portions of it are exposed. [9] During the deposition of the Stephen Formation, mudflows ran down and along the escarpment, trapping the Burgess shale organisms and burying them quickly at the base of the cliff. This prevented their decay, preserving their soft tissues as well as their hard parts in the Stephen Formation shales. [4] [9]

Distribution and stratigraphic relationships

The Cathedral Formation is present in the southern Canadian Rockies of southwestern Alberta and southeastern British Columbia. It reaches a maximum thickness of about 610 metres (2000 feet) at Mount Stephen. It is in gradational contact with the underlying Mount Whyte and Naiset Formations, and with the overlying Stephen Formation. [1] [3] [10]

To the west, the Cathedral Formation terminates abruptly against the shales of the Stephen Formation at the Cathedral escarpment. The formation thins eastward, grading into the Earlie Formation beneath the Alberta plains. To the north it grades into the Snake Indian Formation. It is equivalent to the thinner Elko Formation to the south. [1] [3] [10]

Economic resources

The Cathedral Formation hosts deposits of magnesite (MgCO3) at Mt. Brussilof, about 35 km (22 miles) northwest of Radium Hot Springs in British Columbia. The ore consists of magnesite-rich sparry carbonate masses [11] that have been mined by open-pit methods since 1982. The ore is processed to produce magnesium oxide (MgO) at Exshaw, Alberta. [12]

The formation also hosts deposits of lead, zinc, and silver in the Kicking Horse Pass east of Field, British Columbia. They were discovered in 1884 during the construction of the Canadian Pacific Railway, and are Mississippi Valley-Type (MVT) deposits. They were mined intermittently for more than 60 years. [13] The primary ore minerals are pyrite, sphalerite, and galena, which are associated with dolomite, minor quartz, and calcite. [14] The abandoned mine portals and adits can still be seen along the cliffs that flank the Transcanada Highway. [15]

Related Research Articles

Burgess Shale Rock formation in the Canadian Rockies with exceptional preservation of fossils soft parts

The Burgess Shale is a fossil-bearing deposit exposed in the Canadian Rockies of British Columbia, Canada. It is famous for the exceptional preservation of the soft parts of its fossils. At 508 million years old, it is one of the earliest fossil beds containing soft-part imprints.

Cadomin Formation

The Cadomin Formation is a stratigraphic unit of Early Cretaceous age in the western part of the Western Canada Sedimentary Basin. It is extends from southeastern British Columbia through western Alberta to northeastern British Columbia, and it contains significant reservoirs of natural gas in some areas. It was named after the mining town of Cadomin, which is an acronym of "Canadian Dominion Mining".

Stephen Formation

The Stephen Formation is a geologic formation exposed in the Canadian Rockies of British Columbia and Alberta, on the western edge of the Western Canada Sedimentary Basin. It consists of shale, thin-bedded limestone, and siltstone that was deposited during Middle Cambrian time. It is famous for the exceptional preservation of soft-bodied fossils: the Burgess Shale biota. The formation overlies the Cathedral escarpment, a submarine cliff; consequently it is divided into two quite separate parts, the 'thin' sequence deposited in the shallower waters atop the escarpment, and the 'thick' sequence deposited in the deeper waters beyond the cliff. Because the 'thick' Stephen Formation represents a distinct lithofacies, some authors suggest it warrants its own name, and dub it the Burgess Shale Formation. The stratigraphy of the Thin Stephen Formation has not been subject to extensive study, so except where explicitly mentioned this article applies mainly to the Thick Stephen Formation.

The Beaverhill Lake Group is a geologic unit of Middle Devonian to Late Devonian age in the Western Canada Sedimentary Basin that is present in the southwestern Northwest Territories, northeastern British Columbia and Alberta. It was named by the geological staff of Imperial Oil in 1950 for Beaverhill Lake, Alberta, based on the core from a well that they had drilled southeast of the lake, near Ryley, Alberta.

Elk Point Group

The Elk Point Group is a stratigraphic unit of Early to Middle Devonian age in the Western Canada and Williston sedimentary basins. It underlies a large area that extends from the southern boundary of the Northwest Territories in Canada to North Dakota in the United States. It has been subdivided into numerous formations, number of which host major petroleum and natural gas reservoirs.

The Lynx Formation or Lynx Group is a stratigraphic unit of Late Cambrian (Dresbachian) age in the Western Canada Sedimentary Basin. It is present in the Canadian Rockies of Alberta and British Columbia. It was originally described as the Lynx Formation by Charles Doolittle Walcott in 1913, based on and named for outcrops on the slopes of Lynx Mountain on the continental divide east of Mount Robson. It was subdivided into five formations and elevated to group status by J.D. Aitken and R.G. Greggs in 1967. The name Lynx Formation continues to be used in areas where some or all of the subdivisions cannot be distinguished. All of the formations in the Lynx Group include fossil trilobites and some contain the stromatolite Collenia.

The Minnes Group, originally named the Minnes Formation, is a geologic unit of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin. It is present in the northern foothills of the Canadian Rockies and the adjacent plains in northeastern British Columbia and west-central Alberta. Its strata include natural gas reservoirs and minor coal deposits. Fossil dinosaur tracks have been described from one of its formations.

Deadwood Formation

The Deadwood Formation is a geologic formation of the Williston Basin and Western Canada Sedimentary Basin. It is present in parts of North and South Dakota and Montana in the United States, and in parts of Alberta, Saskatchewan, and southwestern corner of Manitoba in Canada. It is of Late Cambrian to Early Ordovician age and was named for exposures in Whitewood Creek near Deadwood, South Dakota. It is a significant aquifer in some areas, and its conglomerates yielded significant quantities of gold in the Black Hills of South Dakota.

Gog Group Stratigraphic unit in the Western Canada Sedimentary Basin

The Gog Group is a stratigraphic unit in the Western Canada Sedimentary Basin. It is present in the western main ranges of the Canadian Rockies in Alberta and British Columbia, and in the Cariboo Mountains and in the central Purcell Mountains in southwestern British Columbia. It was named by C.F. Deiss in 1940 for a type locality near Mount Assiniboine.

Cairn Formation

The Cairn Formation is a geologic formation of Late Devonian (Frasnian) age in the Western Canada Sedimentary Basin. It was named for the Cairn River near its junction with the Southesk River in Jasper National Park by D.J. McLaren in 1955.

The Survey Peak Formation is a stratigraphic unit of latest Cambrian to earliest Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Survey Peak near Mount Erasmus in Banff National Park by J.D. Aitken and B.S. Norford in 1967. The Survey Peak Formation is fossiliferous and includes remains of trilobites and other marine invertebrates, as well as conodonts, stromatolites, and thrombolites.

The Mount Whyte Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies and the adjacent southwestern Alberta plains. It was deposited during Middle Cambrian time and consists of shale interbedded with other siliciclastic rock types and limestones. It was named for Mount Whyte in Banff National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils, and it includes several genera of fossil trilobites.

The Monteith Formation is a geologic formation of Early Cretaceous (Valanginian) age in the Western Canada Sedimentary Basin that consists primarily of sandstone. It is present in the northern foothills of the Canadian Rockies and the adjacent plains in northeastern British Columbia and west-central Alberta.

The Kootenay Group, originally called the Kootenay Formation, is a geologic unit of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin that is present in the southern and central Canadian Rockies and foothills. It includes economically important deposits of high-rank bituminous and semi-anthracite coal, as well as plant fossils and dinosaur trackways.

The Purcell Supergroup is composed primarily of argillites, carbonate rocks, quartzites, and mafic igneous rocks of late Precambrian (Mesoproterozoic) age. It is present in an area of about 15,000 km2 in southwestern Alberta and southeastern British Columbia, Canada, and it extends into the northwestern United States where it is called the Belt Supergroup. It was named for the Purcell Mountains of British Columbia by R.A. Daly in 1912. Fossil stromatolites and algal structures are common in some of the Purcell Supergroup rocks, and the Sullivan ore body at Kimberley, British Columbia, a world-class deposit of lead, zinc, and silver, lies within the Alderidge Formation in the lower part of the Purcell.

Eldon Formation Geologic formation in Canada

The Eldon Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies of southwestern Alberta and southeastern British Columbia. It is a thick sequence of massive, cliff-forming limestones and dolomites that was named for Eldon Switch on the Canadian Pacific Railway near Castle Mountain in Banff National Park by Charles Doolittle Walcott, who discovered the Burgess Shale fossils. The Eldon Formation was deposited during Middle Cambrian time, and it includes fossil stromatolites. The Eldon forms the scenic cliffs at the top of Castle Mountain, and can also be seen at Mount Yamnuska and other mountains in Banff and Yoho National Parks.

Pika Formation Geologic formation in Canada

The Pika Formation is a stratigraphic unit of Middle Cambrian age that is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Pika Peak near Lake Louise in Banff National Park by C.F. Deiss in 1939. It is fossiliferous and preserves several genera of trilobites. Outcrops of the Pika Formation can be seen in Banff and Jasper National Parks.

The Arctomys Formation is a stratigraphic unit of late Middle Cambrian age. It is present on the western edge of the Western Canada Sedimentary Basin in the Canadian Rockies of Alberta and British Columbia. It was named for Arctomys Peak near Mount Erasmus in Banff National Park by Charles Doolittle Walcott in 1920. Outcrops of the Arctomys can be seen in Banff and Jasper National Parks.

The Snake Indian Formation is a stratigraphic unit of Middle Cambrian age that is present on the western edge of the Western Canada Sedimentary Basin in the northern Canadian Rockies of Alberta and British Columbia. It was named for Snake Indian River in Jasper National Park by E.W. Montjoy and J.D. Aitken in 1978. The type locality was established on Chetamon Mountain.

The Glenogle Formation or Glenogle Shale is a stratigraphic unit of Ordovician age. It is present on the western edge of the Western Canada Sedimentary Basin in southeastern British Columbia. It consists primarily of black shale and was named for Glenogle Creek in the Kicking Horse River area by L.D. Burling in 1923.

References

  1. 1 2 3 4 5 6 Glass, D.J. (editor) 1997. Lexicon of Canadian Stratigraphy, vol. 4, Western Canada including eastern British Columbia, Alberta, Saskatchewan and southern Manitoba. Canadian Society of Petroleum Geologists, Calgary, 1423 p. on CD-ROM. ISBN   0-920230-23-7.
  2. Walcott, C.D. 1908. Nomenclature of some Cambrian Cordilleran formations. Smithsonian Miscellaneous Collections, vol. 53, no. 1, 14 pp.
  3. 1 2 3 4 Slind, O.L., Andrews, G.D., Murray, D.L., Norford, B.S., Paterson, D.F., Salas, C.J., and Tawadros, E.E., Canadian Society of Petroleum Geologists and Alberta Geological Survey (1994). "The Geological Atlas of the Western Canada Sedimentary Basin (Mossop, G.D. and Shetsen, I., compilers), Chapter 8: Middle Cambrian and Early Ordovician Strata of the Western Canada Sedimentary Basin". Archived from the original on 2016-07-01. Retrieved 2018-07-13.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 4 Conway Morris, S. and Whittington, H.B. 1985. Fossils of the Burgess Shale, a national treasure in Yoho National Park, British Columbia. Geological Survey of Canada, Miscellaneous Report 43, 31 p.
  5. Aitken, J.D. 1971. Control of lower Paleozoic sedimentary facies by the Kicking Horse Rim, southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, vol. 19, no. 3, p. 557-569.
  6. Aitken, J.D. 1997. Stratigraphy of the Middle Cambrian platformal succession, southern Rocky Mountains. Geological Survey of Canada, Bulletin 398, 322 p.
  7. Fletcher, T.P. and Collins, D.H. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences, vol. 35, p. 413-436.
  8. Fritz, W.H. 1990. Comments and replies on "The Burgess Shale: Not in the shadow of the Cathedral escarpment"; Comment: In defense of the escarpment near the Burgess shale fossil locality. Geoscience Canada, vol. 13, no. 2, p. 106-118.
  9. 1 2 Caron, J. -B.; Gaines, R. R.; Mangano, M. G.; Streng, M.; Daley, A. C. (2010). "A new Burgess Shale-type assemblage from the "thin" Stephen Formation of the southern Canadian Rockies". Geology. 38 (9): 811–814. doi:10.1130/G31080.1.
  10. 1 2 Alberta Geological Survey, 2019. "Alberta Table of Formations". Alberta Energy Regulator. Retrieved 2 July 2019.
  11. Simandl, G.J. and Hancock, J.D. 1991. Geology of the Mount Brussilof magnesite deposit, southeastern British Columbia (82J12, 13). Geological Fieldwork 1990, British Columbia Geological Survey Branch, Paper 1991-1, p. 269-278.
  12. Anonymous. "Baymag Company Overview" . Retrieved 2 July 2019.
  13. Ney, C.S. 1954. Monarch and Kicking Horse mines, Field, British Columbia. Guide book, 4th Annual Field Conference Banff-Golden-Radium. Canadian Society of Petroleum Geologists.
  14. Vandeginste, V., Swennen, R., Gleeson, S.A., Ellam, R.M., Osadetz, K. and Roure, F. 2007. Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc deposits, southeast British Columbia, Canada. Miner Deposita, vol. 32, 913-935.
  15. Leckie, D.A. 2017. Rocks, ridges and rivers – Geological wonders of Banff, Yoho, and Jasper National Parks. Brokenpoplars, Calgary, Alberta, 217 pp. ISBN   978-0-9959082-0-8.