Hornerstown Formation

Last updated
Hornerstown Formation
Stratigraphic range: Maastrichtian-Danian
66.5–65.5  Ma
O
S
D
C
P
T
J
K
Pg
N
[1]
Type Geological formation
Underlies Vincentown Formation
Overlies New Egypt Formation and Tinton Formation
Location
Region New Jersey
Country USA

The Hornerstown Formation is a Paleogene or latest Mesozoic geologic formation in New Jersey. [2] The age of these deposits have been controversial. While most fossils are of animals types known from the earliest Cenozoic era, several fossils of otherwise exclusively Cretaceous age have been found. These include remains of the shark Squalicorax , several types of non-avian dinosaurs, the teleost fish Enchodus , several species of ammonite, and marine lizards referred to the genus Mosasaurus . Some of these remains show signs of severe abrasion and erosion, however, implying that they are probably re-worked from older deposits. Most of these fossils are restricted to the lowest point in the formation, one rich in fossils and known as the Main Fossiliferous Layer, or MFL. Other explanations for the out-of-place fossils in the MFL is that they represent a time-averaged assemblage that built up and remained unburied during a time of low sediment deposition, or that they were stirred up from deeper in the sediment and deposited together during a tsunami. [3]

Contents

Vertebrate paleofauna

Birds

Birds of the Hornerstown Formation
GenusSpeciesLocationStratigraphic positionAbundanceNotes

Anatalavis [4]

A. rex. [4]

Graculavus [4]

G. velox [4]

Laornis [4]

L. edwardsianus [4]

Palaeotringa [4]

P. littoralis [4]

P. vagans [4]

Telmatornis [4]

T. priscus [4]

Tytthostonyx [4]

T. glauconiticus [4]

Non-Avian Dinosaurs

Dinosaurs of the Hornerstown Formation
GenusSpeciesLocationStratigraphic positionAbundanceNotes

Dryptosaurus [5]

D. aquilunguis

Gloucester County Maastrichtian

Turtles

Testudines of the Hornerstown Formation
GenusSpeciesLocationStratigraphic positionAbundanceNotes

Osteopygis [1]

O. emarginatus

Maastrichtian-Danian
Euclastes E. wielandifound as a separate genus from the cranial material of Osteopygis

Crocodylomorphs

Crocodylomorphs of the Hornerstown Formation
GenusSpeciesLocationStratigraphic positionAbundanceNotes

Bottosaurus [6]

B. harlani.

Hyposaurus [7] H. rogersii

Ray-finned Fishes

Actinopterygii of the Hornerstown Formation
GenusSpeciesLocationStratigraphic positionAbundanceNotes

Iridopristis [8]

I. parrisi [8]

Sewell, New Jersey Danian A stem-lineage member of Holocentridae.

See also

Related Research Articles

<span class="mw-page-title-main">Lance Formation</span> Geological formation in the United States

The Lance (Creek) Formation is a division of Late Cretaceous rocks in the western United States. Named after Lance Creek, Wyoming, the microvertebrate fossils and dinosaurs represent important components of the latest Mesozoic vertebrate faunas. The Lance Formation is Late Maastrichtian in age, and shares much fauna with the Hell Creek Formation of Montana and North Dakota, the Frenchman Formation of southwest Saskatchewan, and the lower part of the Scollard Formation of Alberta.

The Oldman Formation is a stratigraphic unit of Late Cretaceous age that underlies much of southern Alberta, Canada. It consists primarily of sandstones that were deposited in fluvial channel and floodplain environments. It was named for exposures along the Oldman River between its confluence with the St. Mary River and the city of Lethbridge, and it is known primarily for its dinosaur remains and other fossils.

<span class="mw-page-title-main">Two Medicine Formation</span> Geological formation in Montana, United States and Alberta, Canada

The Two Medicine Formation is a geological formation, or rock body, in northwestern Montana and southern Alberta that was deposited between 83.5 ± 0.7 Ma and 70.6 ± 3.4 Ma, during Campanian time. It crops out to the east of the Rocky Mountain Overthrust Belt, and the western portion of this formation is folded and faulted while the eastern part, which thins out into the Sweetgrass Arch, is mostly undeformed plains. Below the formation are the nearshore deposits of the Virgelle Sandstone, and above it is the marine Bearpaw Shale. Throughout the Campanian, the Two Medicine Formation was deposited between the western shoreline of the Late Cretaceous Interior Seaway and the eastward advancing margin of the Cordilleran Overthrust Belt. The Two Medicine Formation is mostly sandstone, deposited by rivers and deltas.

The Cedar Mountain Formation is the name given to a distinctive sedimentary geologic formation in eastern Utah, spanning most of the early and mid-Cretaceous. The formation was named for Cedar Mountain in northern Emery County, Utah, where William Lee Stokes first studied the exposures in 1944.

<span class="mw-page-title-main">Cloverly Formation</span> Geological formation in the United States

The Cloverly Formation is a geological formation of Early and Late Cretaceous age that is present in parts of Montana, Wyoming, Colorado and Utah in the western United States. It was named for a post office on the eastern side of the Bighorn Basin in Wyoming by N.H. Darton in 1904. The sedimentary rocks of formation were deposited in floodplain environments and contain vertebrate fossils, including a diverse assemblage of dinosaur remains. In 1973, the Cloverly Formation Site was designated as a National Natural Landmark by the National Park Service.

<span class="mw-page-title-main">Bearpaw Formation</span> Geologic formation in North America

The Bearpaw Formation, also called the Bearpaw Shale, is a geologic formation of Late Cretaceous (Campanian) age. It outcrops in the U.S. state of Montana, as well as the Canadian provinces of Alberta and Saskatchewan, and was named for the Bear Paw Mountains in Montana. It includes a wide range of marine fossils, as well as the remains of a few dinosaurs. It is known for its fossil ammonites, some of which are mined in Alberta to produce the organic gemstone ammolite.

<span class="mw-page-title-main">Lameta Formation</span> Geologic formation in India

The Lameta Formation, also known as the Infratrappean Beds, is a sedimentary geological formation found in Madhya Pradesh, Gujarat, Maharashtra, Telangana, and Andhra Pradesh, India, associated with the Deccan Traps. It is of the Maastrichtian age, and is notable for its dinosaur fossils

The Milk River Formation is a sandstone-dominated stratigraphic unit of the Western Canada Sedimentary Basin in southern Alberta, Canada. It was deposited in near-shore to coastal environments during Late Cretaceous time. Based on uranium-lead dating, palynology and stratigraphic relationships, deposition occurred between ~84.1 and 83.6 Ma.

The Mooreville Chalk is a geological formation in North America, within the U.S. states of Alabama and Mississippi, which were part of the subcontinent of Appalachia. The strata date back to the early Santonian to the early Campanian stage of the Late Cretaceous. The chalk was formed by pelagic sediments deposited along the eastern edge of the Mississippi embayment. It is a unit of the Selma Group and consists of the upper Arcola Limestone Member and an unnamed lower member. Dinosaur, mosasaur, and primitive bird remains are among the fossils that have been recovered from the Mooreville Chalk Formation.

The Demopolis Chalk is a geological formation in North America, within the U.S. states of Alabama, Mississippi, and Tennessee. The chalk was formed by pelagic sediments deposited along the eastern edge of the Mississippi embayment during the middle Campanian stage of the Late Cretaceous. It is a unit of the Selma Group and consists of the upper Bluffport Marl Member and a lower unnamed member. Dinosaur and mosasaur remains are among the fossils that have been recovered from the Demopolis Chalk.

The Yezo Group is a stratigraphic group in Hokkaido, Japan and Sakhalin, Russia which is primarily Late Cretaceous in age. It is exposed as roughly north–south trending belt extending 1,500 kilometres through central Hokkaido from Urakawa to Cape Sōya and Sakhalin from the south coast to Alexandrovsk-Sakhalinsky District. It consists of marine forearc basin sediments, typically turbiditic and bioturbated mudstones and sandstones with subordinate conglomerate primarily deposited on the continental shelf and slope of the ancient Yezo subduction margin. It forms a continuous depositional sequence with the Sorachi Group, which overlies the Horokanai Ophiolite. The sequence gradually shallows upwards with the terminal Hakobuchi Formation representing a fluvial-inner shelf environment.

<span class="mw-page-title-main">Ripley Formation</span> Geological formation in the southern United States

The Ripley Formation is a geological formation in North America found in the U.S. states of Alabama, Georgia, Mississippi, Missouri, and Tennessee. The lithology is consistent throughout the layer. It consists mainly of glauconitic sandstone. It was formed by sediments deposited during the Maastrichtian stage of the Late Cretaceous. It is a unit of the Selma Group and consists of the Cusseta Sand Member, McNairy Sand Member and an unnamed lower member. It has not been extensively studied by vertebrate paleontologists, due to a lack of accessible exposures. However, fossils have been unearthed including crocodile, hadrosaur, nodosaur, tyrannosaur, ornithomimid, dromaeosaur, and mosasaur remains have been recovered from the Ripley Formation.

The Moreno Formation is a Mesozoic geologic formation located in San Joaquin Valley (California).
Dinosaur remains diagnostic to the genus level are among the fossils that have been recovered from the formation.

The Mount Laurel Formation is a Mesozoic geologic formation located in New Jersey and Delaware. Dinosaur remains diagnostic to the genus level are among the fossils that have been recovered from the formation. Dinosaur teeth recovered from this formation include tyrannosauroid teeth similar to those of Dryptosaurus, as well as teeth from a ~3-4m saurornitholestine dromaeosaurid. Other fossils include: Belemnites in the genus Belemnitella, Oysters such as Exogyra and Pycnodonte, and rare mosasaur, turtle, and plesiosaur remains.

<span class="mw-page-title-main">Appalachia (landmass)</span> Mesozoic land mass separated from Laramidia to the west by the Western Interior Seaway

During most of the Late Cretaceous the eastern half of North America formed Appalachia, an island land mass separated from Laramidia to the west by the Western Interior Seaway. This seaway had split North America into two massive landmasses due to a multitude of factors such as tectonism and sea-level fluctuations for nearly 40 million years. The seaway eventually expanded, divided across the Dakotas, and by the end of the Cretaceous, it retreated towards the Gulf of Mexico and the Hudson Bay. This left the island masses joined in the continent of North America as the Rocky Mountains rose. From the Cenomanian to the end of the Campanian ages of the Late Cretaceous, Appalachia was separated from the rest of North America. As the Western Interior Seaway retreated in the Maastrichtian, Laramidia and Appalachia eventually connected. Because of this, its fauna was isolated, and developed very differently from the tyrannosaur, ceratopsian, hadrosaurid, pachycephalosaur and ankylosaurid dominated fauna of the western part of North America, known as "Laramidia".

<span class="mw-page-title-main">Paleontology in Maryland</span>

Paleontology in Maryland refers to paleontological research occurring within or conducted by people from the U.S. state of Maryland. The invertebrate fossils of Maryland are similar to those of neighboring Delaware. For most of the early Paleozoic era, Maryland was covered by a shallow sea, although it was above sea level for portions of the Ordovician and Devonian. The ancient marine life of Maryland included brachiopods and bryozoans while horsetails and scale trees grew on land. By the end of the era, the sea had left the state completely. In the early Mesozoic, Pangaea was splitting up. The same geologic forces that divided the supercontinent formed massive lakes. Dinosaur footprints were preserved along their shores. During the Cretaceous, the state was home to dinosaurs. During the early part of the Cenozoic era, the state was alternatingly submerged by sea water or exposed. During the Ice Age, mastodons lived in the state.

<span class="mw-page-title-main">Paleontology in Delaware</span>

Paleontology in Delaware refers to paleontological research occurring within or conducted by people from the U.S. state of Delaware. There are no local rocks of Precambrian, Paleozoic, Triassic, or Jurassic age, so Delaware's fossil record does not begin until the Cretaceous period. As the Early Cretaceous gave way to the Late Cretaceous, Delaware was being gradually submerged by the sea. Local marine life included cephalopods like Belemnitella americana, and marine reptiles. The dwindling local terrestrial environments were home to a variety of plants, dinosaurs, and pterosaurs. Along with New Jersey, Delaware is one of the best sources of Late Cretaceous dinosaur fossils in the eastern United States. Delaware was still mostly covered by sea water through the Cenozoic era. Local marine life included manatees, porpoises, seals, and whales. Delaware was worked over by glaciers during the Ice Age. The Cretaceous belemnite Belemnitella americana is the Delaware state fossil.

<span class="mw-page-title-main">Paleontology in New Jersey</span>

Paleontology in New Jersey refers to paleontological research in the U.S. state of New Jersey. The state is especially rich in marine deposits.

The geological history of North America comprises the history of geological occurrences and emergence of life in North America during the interval of time spanning from the formation of the Earth through to the emergence of humanity and the start of prehistory. At the start of the Paleozoic Era, what is now "North" America was actually in the Southern Hemisphere. Marine life flourished in the country's many seas, although terrestrial life had not yet evolved. During the latter part of the Paleozoic, seas were largely replaced by swamps home to amphibians and early reptiles. When the continents had assembled into Pangaea, drier conditions prevailed. The evolutionary precursors to mammals dominated the country until a mass extinction event ended their reign.

<span class="mw-page-title-main">Kristianstad Basin</span> Cretaceous geological formation in Skåne, Sweden

The Kristianstad Basin is a Cretaceous-age structural basin and geological formation in northeastern Skåne, the southernmost province of Sweden. The basin extends from Hanöbukten, a bay in the Baltic Sea, in the east to the town of Hässleholm in the west and ends with the two horsts Linderödsåsen and Nävlingeåsen in the south. The basin's northern boundary is more diffuse and there are several outlying portions of Cretaceous-age sediments. During the Cretaceous, the region was a shallow subtropical to temperate inland sea and archipelago.

References

  1. 1 2 Gentry, A.D.; Kiernan, C.R.; Parham, J.F. (2022). "A large non-marine turtle from the Upper Cretaceous of Alabama and a review of North American "Macrobaenids"". The Anatomical Record. doi:10.1002/ar.25054.
  2. Weishampel, et al. (2004). "Dinosaur distribution." Pp. 517-607.
  3. Gallagher, W.B. (2005). "Recent mosasaur discoveries from New Jersey and Delaware, USA: stratigraphy, taphonomy and implications for mosasaur extinction." Netherlands Journal of Geosciences — Geologie en Mijnbouw, 84(3): 241-245. Archived 2012-09-04 at the Wayback Machine
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 "3.22 New Jersey, United States; 7. Hornerstown Formation," in Weishampel, et al. (2004). Page 586.
  5. Olsson, R.K. (1960). "Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey coastal plain". Journal of Paleontology. 34: 1–58.
  6. Cossette, A. P., and C. A. Brochu. 2018. A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids. Journal of Vertebrate Paleontology. DOI:10.1080/02724634.2018.1486321.
  7. Morgan, Donald J (December 2018). "PRESENCE OF A DYROSAURID NEOSUCHIAN IN THE SEVERN/BRIGHTSEAT FORMATION OF MARYLAND". The Journal of the Delaware Valley Paleontological Society. X: 91 to 104.
  8. 1 2 Andrews, J. V.; Schein, J. P.; Friedman, M. (2023). "An earliest Paleocene squirrelfish (Teleostei: Beryciformes: Holocentroidea) and its bearing on the timescale of holocentroid evolution". Journal of Systematic Palaeontology. 21 (1). doi: 10.1080/14772019.2023.2168571 .

Bibliography