![]() |
Electricity generation in Canada |
---|
![]() |
According to the International Hydropower Association, Canada is the fourth largest producer of hydroelectricity in the world in 2021 after the United States, Brazil, and China. [1] In 2019, Canada produced 632.2 TWh of electricity with 60% of energy coming from Hydroelectric and Tidal Energy Sources). [2]
Some provinces and territories, such as British Columbia, Manitoba, Newfoundland and Labrador, Quebec and Yukon produce over 90% of their electricity from Hydro. All of the dams with large reservoirs were completed before 1990, since then most development has been run-of-the-river, both large and small. Natural Resources Canada calculates the current installed small hydro capacity is 3,400 MW, with an estimated potential of 15,000 MW. [3] A report on the future of hydroelectricity, suggests the remaining 40% potential will remain undeveloped up to 2050, citing a lack of public acceptance. [4] The widespread usage of hydroelectricity, including being incorporated into electric utility names such as Toronto Hydro or BC Hydro, has led to "hydro" being used in some parts of Canada to refer to electricity in general, regardless of source. [5] [6]
As of 2019, Canada had 81 GW of installed hydroelectric capacity, producing about 400 TWh of electricity. [7]
province/territory | installed capacity (MW) |
---|---|
Alberta | 943 |
British Columbia | 14,210 |
Manitoba | 5,701 |
Newfoundland and Labrador | 7,775.8 |
New Brunswick | 950.1 |
Northwest Territories | 56 |
Nova Scotia | 365 |
Ontario | 7,480 |
Prince Edward Island | 0 |
Quebec | 38,400 |
Saskatchewan | 868 |
Yukon | 95 |
BC Hydro owns and operates the majority of hydroelectric installations in British Columbia. A second crown corporation, Columbia Power Corporation and two companies also own large dams in BC, Alcan's Kemano Project and FortisBC.
90% of BC Hydro's generation is produced by hydroelectric means. Natural gas and biomass thermal power round out the generation portfolio. [9]
Over 80% of BC Hydro's installed in generating capacity is at hydroelectric installations in the Peace and Columbia River basins. The GM Shrum and Peace Canyon generating stations are on the Peace River produced 29% of BC Hydro's electricity requirements. In the Columbia River Basin, Mica and Revelstoke hydroelectric plants together contributed 25%, while Kootenay Canal and Seven Mile generating stations together supplied 10%. [10]
The remaining 25 hydroelectric generating stations supplied 14% of electricity production. BC Hydro also operates thermal power plants. The Burrard Thermal Generating Station contributes 7.5% and the remaining 14.5% of the electricity requirement was supplied by purchases and other transactions. [10]
BC Hydro's last dam was completed in 1984, since then run-of-the-river projects with private partners have been built. Power production without reservoirs varies dramatically through the year, so older dams with large reservoirs, retain water and average out capacity. As of 2012, there were approximately 40 small hydro sites generating 750 MW. [11] By 2014 various companies have built a total of 100 run of the river projects under 50 MW. In 2014 they produced 18,000 GWh from 4,500 MW of capacity. [12]
Present drought conditions persist in BC Hydro hydrodam reservoirs, particularly in the south coast of the province. [13] In a 2022 BC Hydro report titled "Casting Drought", it is noted that Campbell River on Vancouver Island has experienced its lowest water flow in 53 years. Despite these conditions, BC Hydro spokesperson Mora Scott states that preventative measures such as water conservation have been made in order to protect water flow and fish populations in vulnerable watersheds.
As of March 31, 2018, Manitoba Hydro serves a peak Manitoba electrical load of 5,648 megawatts. [14] Electrical supply to Manitoba customers was 22.5 terawatt-hours in fiscal 2017, with total revenue due to electricity of $1.464 billion CAD. Extraprovincial sales totaled $437 million in 2017-18 and were at 9.448 terawatt-hours, with normal water flows. [15] The company also delivered 2.048 billion cubic metres of natural gas in 2017–18, which contributed $346 million CAD to revenues. [16] As of early 2020, around 97% of the electricity generation in Manitoba comes from hydroelectricity. [17] The new Keeyask Station on the Nelson River was completed in 2021-2022. [18] [19]
Newfoundland and Labrador Hydro's installed generating capacity, 8,652 megawatts (MW), 92 percent hydroelectric, is the third largest of all utility companies in Canada. The new Muskrat Falls Generating Station with a total generating capacity of 824 MW was completed in 2020. [20]
The Northwest Territories has an installed hydroelectric generating capacity of 55 MW, supplying electricity to the North Slave and South Slave electricity grids. Each grid operates independently and is not connected to the electrical grid in the rest of Canada.
Ontario Power Generation (OPG) produces 50% of the electricity used in the province, 40% from hydroelectric, 10% from nuclear-powered facilities, 30% from solar, and 20% from biomass. OPG uses thermal plants that burn biomass and natural gas with a generating capacity of 2,458 MW; these plants were not used in 2015. [21]
After a provincial government commitment to phase out all coal generating plants, two units at Nanticoke were shut down in fall 2010. [22] Another two were shut down in 2011. [23] The final four were shut down on December 31, 2013. [24]
Most of Ontario's large hydroelectric sites were utilized in the early 20th century, [25] which limits exenstive expansion from occurring within the province. Nonetheless, efforts by the Government of Canada in collaboration with hydropower entities to expand and maintain hydroelectric resources have been put in motion. This is partly driven by the fact that Ontario is forecasted to have a 60 TWh increase in net energy demand by 2043. [26]
Ontario's current hydroelectricity stations are mainly located in southern Ontario. [27]
On January 26, 2022, Todd Smith, the Ontario Minister of Energy requested an analysis report from IESO in support of a voluntary clean energy credit registry for Ontario citizens. [28] CECs are claimable credits that represent one megawatt hour of clean energy. [29] According to the report requirements outlined in the letter, the registry would include credit offerings that based from existing, non-emitting generation such as nuclear, waterpower, wind, solar, and bioenergy.
On February 9, 2023, a report titled Made in Ontario Northern Hydroelectric Opportunities: Securing a Clean Energy Future Through Hydropower was published by Ontario Power Generation (OPG) in collaboration with the Ontario Waterpower Association. In response to Todd Smith's letter. The report claimed that the estimated hydroelectric potential in northern Ontario is 3000 to 4000 megawatts. [30] The document also provided the following locations as possible sites for hydroelectric development.
Area | Number of Sites | Rivers | Low Scenario | High Scenario |
---|---|---|---|---|
Moose River Basin | 9 | Abitibi Mattagami Moose | 640 MW | 1,250 MW |
Albany and Attawapiskat Rivers | 8 | Albany Attawapiskat | 680 MW | 1,300 MW |
Little Jackfish River | 2 | Little Jackfish | 80 MW | 105 MW |
Severn River Basin | 2 | Severn Windigo | 20 MW | 35 MW |
Little Jackfish River in particular had been an OPG ongoing project since 2011, [31] but had been put on hold as energy demands at that time were insufficient. However, with forecasted new demands, the revival of the project may be considered feasible by the Government of Canada.
While the instalment of hydroelectric stations in northern Ontario could potentially meet rising energy demands, public concerns over the environmental damage caused by hydroelectric activities are present.
The Ontario River Alliance opposes the creation of new hydroelectric facilities in Ontario, insisting that labeling hydroelectric power as a non-emitting source for CRCs is misinformation and that dams do generate greenhouse gasses by the accumulation of methane producing biomass. [32] This claim is based on a 2006 European study that correlates increased methane production of 7% to the accumulation of sedimentation behind hydraulic structures. [33]
Hydro-Québec's extensive network of 61 hydroelectric dams have a combined capacity of 38,400 megawatts, [34] accounting for over half of the Canadian total. Hydropower accounts for 95.73% [35] of the supply sold by the Quebec Crown-owned utility. Five of Hydro-Québec's hydroelectric facilities are rated above 2,000 MW — the Manic-5, La Grande-4, La Grande-3 La Grande-2-A and Robert-Bourassa stations — while 7 others have a capacity of over 1,000 megawatts. [36]
The proposed Gull Island facility would consist of a generation station with a capacity of 2,250 MW after 2035. [37]
The Romaine River project in Quebec started construction in 2009 and will have a capacity of 1550 MW by 2023.
The Site C dam on the Peace River in British Columbia will have a capacity of 1100 MW in 2025.
![]() | This section may contain information not important or relevant to the article's subject.(July 2023) |
Population (thousands) | Area (km2) | Renewable freshwater resources | Total water withdrawal (km3) per year | Gross Domestic Product (millions of $ U.S.) | Gross Domestic Product ($ U.S.) per capita | ||||
---|---|---|---|---|---|---|---|---|---|
Volume (km3) | Volume (m3) per capita | Volume (m3) per unit area (m2) | |||||||
Brazil | 188,158 | 8,514,880 | 8,233 | 1 | 43,756 | 0.967 | 59.3 | 1,089,398 | 5,790 |
India | 1,147,746 | 3,287,260 | 1,892 | 9 | 1,648 | 0.576 | 645.9 | 911,376 | 794 |
France | 63,236 | 549,190 | 204 | 43 | 3,226 | 0.371 | 40.0 | 2,266,137 | 35,836 |
Canada | 32,628 | 9,978,904 | 3,472 | 3 | 1109,837 | 0.348 | 42.0 | 1,278,682 | 39,189 |
United States | 305,697 | 9,632,030 | 3,051 | 4 | 9,980 | 0.317 | 473.6 | 13,116,500 | 42,907 |
China | 1,297,847 | 9,598,090 | 2,830 | 6 | 2,181 | 0.295 | 630.4 | 2,779,871 | 2,142 |
Russian Federation | 142,530 | 17,098,240 | 4,508 | 2 | 31,628 | 0.264 | 66.2 | 989,428 | 6,942 |
Mexico | 106,411 | 1,964,380 | 457 | 25 | 4,295 | 0.233 | 78.2 | 945,644 | 8,887 |
Australia | 20,628 | 7,741,220 | 492 | 21 | 23,851 | 0.064 | 23.9 | 787,418 | 38,172 |
South Africa | 48,639 | 1,219,090 | 50 | 95 | 1,028 | 0.041 | 12.5 | 257,728 | 5,299 |
Small hydro is the development of hydroelectric power on a scale suitable for local community and industry, or to contribute to distributed generation in a regional electricity grid. Exact definitions vary, but a "small hydro" project is less than 50 megawatts (MW), and can be further subdivide by scale into "mini" (<1MW), "micro" (<100 kW), "pico" (<10 kW). In contrast many hydroelectric projects are of enormous size, such as the generating plant at the Three Gorges Dam at 22,500 megawatts or the vast multiple projects of the Tennessee Valley Authority.
Hydroelectricity, or hydroelectric power, is electricity generated from hydropower. Hydropower supplies 15% of the world's electricity, almost 4,210 TWh in 2023, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel-powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted.
The Manitoba Hydro-Electric Board, operating as Manitoba Hydro, is the electric power and natural gas utility in the province of Manitoba, Canada. Founded in 1961, it is a provincial Crown Corporation, governed by the Manitoba Hydro-Electric Board and the Manitoba Hydro Act. Today the company operates 16 interconnected generating stations. It has more than 527,000 electric power customers and more than 263,000 natural gas customers. Since most of the electrical energy is provided by hydroelectric power, the utility has low electricity rates. Stations in Northern Manitoba are connected by a HVDC system, the Nelson River Bipole, to customers in the south. The internal staff are members of the Canadian Union of Public Employees Local 998 while the outside workers are members of the International Brotherhood of Electrical Workers Local 2034.
The electricity sector in Canada has played a significant role in the economic and political life of the country since the late 19th century. The sector is organized along provincial and territorial lines. In a majority of provinces, large government-owned integrated public utilities play a leading role in the generation, transmission, and distribution of electricity. Ontario and Alberta have created electricity markets in the last decade to increase investment and competition in this sector of the economy.
The Nelson River Hydroelectric Project refers to the construction of a series of dams and hydroelectric power plants on the Nelson River in Northern Manitoba, Canada. The project began to take shape in the late 1950s, with the planning and construction of the Kelsey dam and hydroelectric power station, and later was expanded to include the diversion of the upper Churchill River into the Nelson River and the transformation of Lake Winnipeg, the world's 11th largest freshwater lake, into a hydroelectric reservoir. The project is owned and operated by Manitoba Hydro, the electrical utility in the province.
The Niagara Tunnel Project was part of a series of major additions to the Sir Adam Beck hydroelectric generation complex in Niagara Falls, Ontario, Canada.
Run-of-river hydroelectricity (ROR) or run-of-the-river hydroelectricity is a type of hydroelectric generation plant whereby little or no water storage is provided. Run-of-the-river power plants may have no water storage at all or a limited amount of storage, in which case the storage reservoir is referred to as pondage. A plant without pondage is subject to seasonal river flows, so the plant will operate as an intermittent energy source. Conventional hydro uses reservoirs, which regulate water for flood control, dispatchable electrical power, and the provision of fresh water for agriculture.
Ontario Power Generation Inc. (OPG) is a Crown corporation and "government business enterprise" that is responsible for approximately half of the electricity generation in the province of Ontario, Canada. It is wholly owned by the government of Ontario. Sources of electricity include nuclear, hydroelectric, wind, gas and biomass. Although Ontario has an open electricity market, the provincial government, as OPG's sole shareholder, regulates the price the company receives for its electricity to be less than the market average, in an attempt to stabilize prices. Since 1 April 2008, the company's rates have been regulated by the Ontario Energy Board.
Renewable energy in Canada represented 17.3% of the Total Energy Supply (TES) in 2020, following natural gas at 39.1% and oil at 32.7% of the TES.
Hydroelectricity is, as of 2019, the second-largest renewable source of energy in both generation and nominal capacity in the United States. In 2021, hydroelectric power produced 31.5% of the total renewable electricity, and 6.3% of the total U.S. electricity.
India is 5th globally for installed hydroelectric power capacity. As of 31 March 2020, India's installed utility-scale hydroelectric capacity was 46,000 MW, or 12.3% of its total utility power generation capacity. Additional smaller hydroelectric power units with a total capacity of 4,683 MW have been installed. India's hydroelectric power potential is estimated at 148,700 MW at 60% load factor. In the fiscal year 2019–20, the total hydroelectric power generated in India was 156 TWh with an average capacity factor of 38.71%.
As of 2018, hydroelectric power stations in the United Kingdom accounted for 1.87 GW of installed electrical generating capacity, being 2.2% of the UK's total generating capacity and 4.2% of UK's renewable energy generating capacity. This includes four conventional hydroelectric power stations and run-of-river schemes for which annual electricity production is approximately 5,000 GWh, being about 1.3% of the UK's total electricity production. There are also four pumped-storage hydroelectric power stations providing a further 2.8 GW of installed electrical generating capacity, and contributing up to 4,075 GWh of peak demand electricity annually.
Siti I Hydroelectric Power Station, commonly referred to as Siti Power Station, is a 5.0 megawatts (6,700 hp) mini hydropower station in Uganda.
Thailand has set targets and policies for the development of its energy sector for 2035, with priority being given to indigenous renewable energy resources, including hydropower.
Smoky Falls Generating Station is one of four stations in the Lower Mattagami River Hydroelectric Complex owned by Ontario Power Generation (OPG) and the Moose Cree First Nation. The station is approximately 85 km (53 mi) northeast of Kapuskasing in the Cochrane District of Northern Ontario. Smoky Falls was originally commissioned as a 54 MW generating station in 1931 by the Spruce Falls Power and Paper Company but it was sold to OPG's predecessor, Ontario Hydro, in 1991. OPG completed a $2.6 billion upgrade of the four Lower Mattagami dams in 2014 and 2015. The new Smoky Falls was commissioned in late 2014 with a 267.9 MW installed capacity.
Kipling Generating Station is one of four stations in the Lower Mattagami River Hydroelectric Complex. The station is jointly owned by Ontario Power Generation and the Moose Cree First Nation (25%). The station is approximately 95 km (59 mi) northeast of Kapuskasing in the Cochrane District of Northern Ontario and is the last of four stations in OPG's Lower Mattagami River complex. Kipling GS was originally commissioned as a 2-unit, 155 MW generating station in 1966 by OPG's predecessor, Ontario Hydro. OPG completed a $2.6 billion construction project covering the four Lower Mattagami dams in 2014 and 2015, and added a third generating unit with 78.3 MW capacity to Kipling GS, bringing the total station capacity to 233.3 MW.
Hydroelectricity is currently China's largest renewable energy source and the second overall after coal. According to the International Hydropower Association, China is the worlds largest producer of hydroelectricity as of 2021. China's installed hydroelectric capacity in 2021 was 390.9 GW, including 36.4 GW of pumped storage hydroelectricity capacity, up from 233 GW in 2011. That year, hydropower generated 1,300 TWh of power, an increase of 68 TWh over 2018 when hydropower generated 1,232 TWh of power, accounting for roughly 18% of China's total electricity generation.
{{cite web}}
: Missing or empty |title=
(help)Even though Canadians cheerfully use nuclear power and don't whine about it, they talk of paying the 'hydro' (electricity) bill.
In many parts of Canada, 'hydro' refers to electricity