Interoperable Communications Based Signaling

Last updated

Interoperable Communications Based Signaling (ICBS) is an initiative backed by the Federal Railroad Administration to enhance interoperability and signaling procurement in the railway system of the United States by creating a single national standard for train control and command systems. The concept was launched in 2005 and an interoperable prototype system was successfully demonstrated in January 2009.

Contents

Background

In North America, there is little operating consistency between railroads; each has its own signaling system, operating rules and equipment. When trains must traverse territory under the control of more than one railroad company, they usually must stop and change crews and equipment at each boundary between railroads.

In Europe, similar situations have existed in that trains must change as they move from one country to another. This is being addressed with European Rail Traffic Management System (ERTMS) and European Train Control System (ETCS) systems, which enhance interoperability.

Companies

Companies developing ICSB systems include Alstom, Ansaldo STS, GE Transportation Systems and Safetran. [1] Alstom and Ansaldo STS have also developed ERTMS systems in Europe.

Timeline

2005

2006

2007

2008

2009

See also

Related Research Articles

<span class="mw-page-title-main">Cab signalling</span> Railway safety system

Cab signaling is a railway safety system that communicates track status and condition information to the cab, crew compartment or driver's compartment of a locomotive, railcar or multiple unit. The information is continually updated giving an easy to read display to the train driver or engine driver.

<span class="mw-page-title-main">Cambrian Line</span> Railway line in Wales, and in Shropshire, England

The Cambrian Line, sometimes split into the Cambrian Main Line and Cambrian Coast Line for its branches, is a railway line that runs from Shrewsbury, England, westwards to Aberystwyth and Pwllheli in Wales. Passenger train services are operated by Transport for Wales Rail between the western terminals of Pwllheli, in Gwynedd, and Aberystwyth, in Ceredigion, and the eastern terminal at Shrewsbury, Shropshire, as part of the Wales & Borders franchise. The railway line is widely regarded as scenic, as it passes through the Cambrian Mountains in central Wales, and along the coast of Cardigan Bay in Snowdonia National Park.

<span class="mw-page-title-main">Automatic train control</span> Class of train protection systems for railways

Automatic train control (ATC) is a general class of train protection systems for railways that involves a speed control mechanism in response to external inputs. For example, a system could effect an emergency brake application if the driver does not react to a signal at danger. ATC systems tend to integrate various cab signalling technologies and they use more granular deceleration patterns in lieu of the rigid stops encountered with the older automatic train stop (ATS) technology. ATC can also be used with automatic train operation (ATO) and is usually considered to be the safety-critical part of a railway system.

<span class="mw-page-title-main">European Train Control System</span> Railway signaling system

The European Train Control System (ETCS) is a train protection system designed to replace the many incompatible systems used by European railways, and railways outside of Europe. ETCS is the signalling and control component of the European Rail Traffic Management System (ERTMS).

<span class="mw-page-title-main">Union Switch & Signal</span> American company (1881–2009)

Union Switch & Signal was an American company based in Pittsburgh, Pennsylvania, which focused on railway signaling equipment, systems and services. The company was acquired by Ansaldo STS in 1988, operating as a wholly-owned company until January 2009, when US&S was renamed "Ansaldo STS USA" to operate as a subsidiary of Ansaldo in the Americas and Asia.

Safetran Systems Corporation was an American company that manufactured switch machines, railroad wayside signal systems, rail transit signaling and rail-highway level crossing active warning systems.

Standards for North American railroad signaling in the United States are issued by the Association of American Railroads (AAR), which is a trade association of the railroads of Canada, the US, and Mexico. Their system is loosely based on practices developed in the United Kingdom during the early years of railway development. However, North American practice diverged from that of the United Kingdom due to different operating conditions and economic factors between the two regions. In Canada, the Canadian Rail Operating Rules (CROR) are approved by the Minister of Transport under the authority of the Railway Safety Act. Each railway company or transit authority in Canada issues its own CROR rulebook with special instructions peculiar to each individual property. Among the distinctions are:

The European Rail Traffic Management System (ERTMS) is the system of standards for management and interoperation of signalling for railways by the European Union (EU). It is conducted by the European Union Agency for Railways (ERA) and is the organisational umbrella for the separately managed parts of

<span class="mw-page-title-main">General Railway Signal</span>

General Railway Signal Company (GRS) was an American manufacturing company located in the Rochester, New York area. GRS was focused on railway signaling equipment, systems and services. The company was established in 1904 and became part of Alstom Transport in 1998. GRS was a member of the Dow Jones Industrial Average from 1928 to 1930.

<span class="mw-page-title-main">Positive train control</span> Type of train protection system

Positive train control (PTC) is a family of automatic train protection systems deployed in the United States. Most of the United States' national rail network mileage has a form of PTC. These systems are generally designed to check that trains are moving safely and to stop them when they are not.

<span class="mw-page-title-main">Eurobalise</span>

A Eurobalise is a specific type of a balise installed between the rails of a railway. Eurobalises are part of the European train control system (ETCS). The balises are pre-programmed and contain information that is read by train antennas. One of their many functions is to allow a train to determine its location.

<span class="mw-page-title-main">Remote control locomotive</span>

A remote control locomotive is a railway locomotive that can be operated with a remote control. It differs from a conventional locomotive in that a remote control system has been installed in one or more locomotives within the consist, which uses either a mechanical or radio transmitter and receiver system. The locomotive is operated by a person not physically at the controls within the locomotive cab. They have been in use for many years in the railroad industry, including industrial applications such as bulk material load-out, manufacturing, process and industrial switching. The systems are designed to be fail-safe so that if communication is lost the locomotive is brought to a stop automatically.

<span class="mw-page-title-main">American Railway Engineering and Maintenance-of-Way Association</span> North American railway industry group

The American Railway Engineering and Maintenance-of-Way Association (AREMA) is a North American railway industry group. It publishes recommended practices for the design, construction and maintenance of railway infrastructure, which are used in the United States and Canada.

<span class="mw-page-title-main">Advanced Civil Speed Enforcement System</span> Train protection system in North America

Advanced Civil Speed Enforcement System (ACSES) is a positive train control cab signaling system developed by Alstom. The system is designed to prevent train-to-train collisions, protect against overspeed, and protect work crews with temporary speed restrictions. The information about permanent and temporary speed restrictions is transmitted to the train by transponders (Balises) lying in the track, coded track circuits and digital radio. It was installed beginning in 2000 on all of Amtrak's Northeast Corridor between Washington and Boston, and has been fully active since December 2015, a few months after the 2015 Philadelphia train derailment which it would have prevented.

EBICab is a trademark registered by Alstom for the equipment on board a train used as a part of an Automatic Train Control system. Three different families exist, which are technically unrelated.

<span class="mw-page-title-main">Rail speed limits in the United States</span> Overview of rail speed limits in the United States of America

Rail speed limits in the United States are regulated by the Federal Railroad Administration. Railroads also implement their own limits and enforce speed limits. Speed restrictions are based on a number of factors including curvature, signaling, track condition, and the presence of grade crossings. Like road speed limits in the United States, speed limits for tracks and trains are measured in miles per hour (mph).

Hitachi Rail STS SpA or Hitachi Rail STS is a transportation company owned by Hitachi with a global presence in the field of railway signalling and integrated transport systems for passenger traffic and freight operations. Hitachi Rail STS plans, designs, manufactures, installs and commissions signaling systems, components and technologies for the management and control of newly built or upgraded railways, transit and freight lines worldwide.

LOCOPROL has been a project to research the integration of satellite navigation into railway networks targeting low-density track lines. It is supposed to extend the ERTMS train protection systems. The partner project LOCOLOC was looking into cab signaling and speed control measures.

The European Rail Traffic Management System (ERTMS) is an initiative backed by the European Union to enhance cross-border interoperability and the procurement of signalling equipment by creating a single Europe-wide standard for train control and command systems.

References

  1. 1 2 3 4 "Positive train control in transition", Progressive Railroading, October 4, 2007
  2. 1 2 3 4 5 6 7 8 9 10 "ICBS summary". Archived from the original on 2009-10-19. Retrieved 2009-07-17.
  3. "Safetran Demonstrates Signal Interoperability", Mass Transit magazine
  4. "Highlights of R&D Activities for PTC Implementation" Archived 2009-05-09 at the Wayback Machine , Federal Railway Administration Research and Development Program Review, March 12, 2009 (see page 11)