This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Only information about light signals (nothing about pointers and arrays, acoustic signals, etc.).(October 2014) |
The Polish (PKP) railway signalling system provides a complex outlook of traffic situations, yet is quite easy to understand. Signals can be divided into following categories:
Most signals are colour lights.
On few stations remained mechanical signals, as well as old colour light signals.
Semi-automatic is the most important type of signal on Polish railways. Its name reflects the fact that it switches to a red (stop) aspect automatically after a train has passed it but it must be switched back to clear by an explicit action from a signal box or dispatch centre. It is the typical signal in use at stations.
A semi-automatic signal can be recognized by its post which is painted with red and white strips. Dwarf versions have their boxes painted so.
A red (stop) aspect on a semi-automatic signal must not be passed.
As presented on this compact chart, semi-automatic signals can display both near and distant functions. Near signals either command a stop or impose a certain speed limit beginning at that signal. Distant signals tell the driver what to expect at the next signal, especially when braking is required.
Distant signal | ||||
---|---|---|---|---|
Vmax | 100 km/h | 60 or 40 km/h | Stop | unspecified |
| | | | |
| | | | |
Vmax | 100 km/h | 60 km/h | 40 km/h | Stop |
Near signal |
Since 2007 the Ie-1 code which regards signalling allows other speed limits. They are indicated by a number representing the speed in tens of km/h (e.g. 5 means 50 km/h) which is lit only with a more restrictive signalling aspect, such that the displayed number relaxes the regular aspect:
On distant signals and repeaters these other speeds are not displayed, therefore a more restrictive aspect is effectively announced.
Semi-automatic signals on a station are tagged with consecutive letters of Latin alphabet, or with a letter followed by a number representing the track number the signal is located on (if multiple signals use the same letter).
The nameplates also contain speed indication which appears as a superscript or a fraction. The numbers have following meaning:
Therefore, a nameplate H 1/2 means a signal named H that aside from S1 will also display S2-S5 aspects for straight direction and S10-S13 for diverging direction. Whereas P3 2 means a signal named P3 that aside from S1 only displays S10-S13 aspects because it's followed only by diverging points.
There may also be a letter m which specifies that this signal also functions as a shunting signal (see below).
Automatic signals are used on lines equipped with automatic block signaling. Their colour language is the same as aspects S1-S5 of semi-automatic signals. The main difference regards the S1 (red) aspect – After stopping, it can be passed but the subsequent maximum speed is limited to 20 km/h.
Automatic signals have their posts painted white (without red strips) to be easily distinguished from semi-automatic signals.
Automatic signals are numbered by their nearest kilometre post multiplied by 10, odd numbers on the down track and even numbers on the up track. Signals on the track opposite to typical traffic (usually on the left track as Polish railways operate on the right track by default) have the letter N appended to the resulting number. A set of bi-directional automatic signals located on the 324.09 km marker will therefore be numbered 3241 on the down track, 3240 on the up track, 3241N on the down track reverse, and 3240N on the up track reverse. In the case of multi-track arrangements with signals located close to each other on different lines, other letters may be affixed to the numbers to distinguish signals on different tracks.
Distant-only signal (Pol. tarcza ostrzegawcza literally meaning warning shield) is used on lines not equipped with ABS and lines with 2-state ABS. These signals are usually placed at braking distance from the next signal. The aspects they display are the same as signal aspects S2-S5, making them technically a signal which is just incapable of displaying a S1 (stop) aspect, however its aspects are not enforced.
Their posts are painted grey and equipped with a distant-only signal sign.
These signals are numbered with 'To' preceding the name of the signal it precedes, i.e. ToB will be the distant signal to B.
When a signal aspect is not visible from the proper distance (because of track curves for instance), a repeater signal is installed to aid drivers. Up to three repeaters may be installed if needed. A repeater signal is not a substitute for a distant-only signal.
Their posts are painted grey and equipped with plates with Roman numerals: III, II, I where the "I" stands closest to the main signal. Their colour language is identical to warning shields, except the fact they also have a continuously glowing white light, which informs that this is not a main signal but a repeater.
These signals are numbered with the Roman numeral, 'Sp', and the number of the signal it repeats. For example, the second repeater ahead of a signal G will be called IISpG.
The following table presents as an example, a station-entry signal designated "B" displaying the aspect S13 (speed limit 40 km/h, stop at the next signal) preceded with distant-only signal and three repeaters:
distant-only signal | 3rd repeater | 2nd repeater | 1st repeater | the main signal | |
---|---|---|---|---|---|
| | | | | |
ToB | 3SpB | 2SpB | 1SpB | B | |
braking distance | |||||
visibility distance | |||||
Level crossing warning is placed in a braking distance before an automatic level crossing. The signal tells the driver whether automobile drivers are warned about an approaching train (blinking red lights, barriers). Normally, level crossing warning signals display no aspect (i.e. are unlit). They light up in the front of an approaching train which is the first clue that the system is working correctly.
Level crossing warning signals are unrelated to other signals, therefore in case of Osp1 signal a train must proceed at 20 km/h regardless the higher speed allowed by last signal.
Their posts are painted black and white strips. They are numbered by the kilometre location of the level crossing they refer to, multiplied by 10 – other than the milepost reference difference, their numbering functions like that of automatic block signals.
Shunting signals (Pol. tarcza manewrowa literally manoeuver shield) are used exclusively at stations. A consist shunting on such signals must not leave the station. Shunting signals are either stand-alone or incorporated into semi-automatic signals, which include the letter "m" in their name on such occasions.
Stand-alone shunting signals have their posts painted gray, except in the case it is a part of the semi-automatic signal, which is painted with white-red stripes. Stand-alone shunting signals are numbered with 'Tm' preceding an Arabic number, and are numbered independently of other signalling or points within a station, e.g. Tm7.
Shunting signals: | ||
---|---|---|
| | Ms1 shunting forbidden S1 stop and shunting forbidden |
| | Ms2 shunting allowed |
The colour light signals installed between 1959 and 1969 differ from the contemporary system. They are still in use at several stations. As a matter of fact they can also be used with ETCS Level 1, only the LEU unit must be reprogrammed to understand certain combinations of lights differently.
A railway signal is a visual display device that conveys instructions or provides warning of instructions regarding the driver's authority to proceed. The driver interprets the signal's indication and acts accordingly. Typically, a signal might inform the driver of the speed at which the train may safely proceed or it may instruct the driver to stop.
Railway signalling (BE), or railroad signaling (AE), is a system used to control the movement of railway traffic. Trains move on fixed rails, making them uniquely susceptible to collision. This susceptibility is exacerbated by the enormous weight and inertia of a train, which makes it difficult to quickly stop when encountering an obstacle. In the UK, the Regulation of Railways Act 1889 introduced a series of requirements on matters such as the implementation of interlocked block signalling and other safety measures as a direct result of the Armagh rail disaster in that year.
Automatic Warning System (AWS) is a railway safety system invented and predominantly used in the United Kingdom. It provides a train driver with an audible indication of whether the next signal they are approaching is clear or at caution. Depending on the upcoming signal state, the AWS will either produce a 'horn' sound, or a 'bell' sound. If the train driver fails to acknowledge a warning indication, an emergency brake application is initiated by the AWS. However if the driver correctly acknowledges the warning indication by pressing an acknowledgement button, then a visual 'sunflower' is displayed to the driver, as a reminder of the warning.
Part of a railway signalling system, a train stop, trip stop or tripcock is a train protection device that automatically stops a train if it attempts to pass a signal when the signal aspect and operating rules prohibit such movement, or if it attempts to pass at an excessive speed.
Linienzugbeeinflussung is a cab signalling and train protection system used on selected German and Austrian railway lines as well as on the AVE and some commuter rail lines in Spain. The system was mandatory where trains were allowed to exceed speeds of 160 km/h (99 mph) in Germany and 220 km/h (140 mph) in Spain. It is also used on some slower railway and urban rapid transit lines to increase capacity. The German Linienzugbeeinflussung translates to continuous train control, literally: linear train influencing. It is also called linienförmige Zugbeeinflussung.
The railway signalling system used across the majority of the United Kingdom rail network uses lineside signals to control the movement and speed of trains.
Australian railway signalling varies between the States of Australia, because the individual States are responsible for the railway systems within their own borders, with, historically, no need to co-ordinate between states except at the boundaries.
Railway signals in Germany are regulated by the Eisenbahn-Signalordnung. There are several signalling systems in use, including the traditional H/V (Hauptsignal/Vorsignal) system.
The signalling system used on the standard-gauge railway network in Sweden is based on that of the traditional mechanical semaphore signals. Currently only colour-light signals are used, together with the Ansaldo L10000 Automatic Train Control system.
The Continuous Automatic Warning System (CAWS) is a form of cab signalling and train protection system used in Ireland to help train drivers observe and obey lineside signals.
North American railroad signals generally fall into the category of multi-headed electrically lit units displaying speed-based or weak route signaling. Signals may be of the searchlight, color light, position light, or color position light types, each displaying a variety of aspects which inform the locomotive operator of track conditions so that they may keep their train under control and able to stop short of any obstruction or dangerous condition.
Railway semaphore signal is one of the earliest forms of fixed railway signals. This semaphore system involves signals that display their different indications to train drivers by changing the angle of inclination of a pivoted 'arm'. Semaphore signals were patented in the early 1840s by Joseph James Stevens, and soon became the most widely used form of mechanical signal. Designs have altered over the intervening years, and colour light signals have replaced semaphore signals in most countries, but in a few they remain in use.
The current French railway signalling system is in force on the Réseau Ferré de France since 1930, when the code Verlant was applied.
Japanese railway signals, according to the ministerial decree defining technical standards of railways, are defined as indicating operational conditions for railway staff driving trains.
The signalling system used on the railway network in Finland comprises color-light signals and fixed signs, used together with the Automatic Train Control system ATP-VR/RHK.
Swiss railway signalling describes the railway signalling systems used in Switzerland by the different railway companies. There are two main types of signal, used up to 160 km/h, above which speed cab signalling is required.
The first railway signalling in Greece was installed on the Athens–Piraeus Railway at the turn of the 20th century, when semaphores and boards were added with the line's electrification. Other Greek trains at that time were controlled by signals given manually by station masters. During World War II, German occupation forces installed mechanically operated semaphore signals at the entrance to all stations, with some light signals at busy stations. Modern signalling is provided through colour light signals. Radio communication between train stations and drivers was introduced in 1973 and digital communication is an ongoing present-day introduction.
Belgian railway signalling is the signalling in effect on the Belgian rail network currently operated by Infrabel.
The application of railway signals on a rail layout is determined by various factors, principally the location of points of potential conflict, as well as the speed and frequency of trains and the movements they require to make.
Modern railway signalling in Thailand on the mainline employs color light signals and computer-based interlocking. The State Railway of Thailand is currently implementing centralized traffic control to link the whole country’s signalling system together using a fiber optic network. This includes recent double-tracking projects for all mainlines extending from Bangkok.