In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse,
for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
Any involution is a bijection.
The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher.
The composition g ∘ f of two involutions f and g is an involution if and only if they commute: g ∘ f = f ∘ g. [3]
The number of involutions, including the identity involution, on a set with n = 0, 1, 2, ... elements is given by a recurrence relation found by Heinrich August Rothe in 1800:
The first few terms of this sequence are 1, 1, 2, 4, 10, 26, 76, 232 (sequence A000085 in the OEIS ); these numbers are called the telephone numbers, and they also count the number of Young tableaux with a given number of cells. [4] The number an can also be expressed by non-recursive formulas, such as the sum
The number of fixed points of an involution on a finite set and its number of elements have the same parity. Thus the number of fixed points of all the involutions on a given finite set have the same parity. In particular, every involution on an odd number of elements has at least one fixed point. This can be used to prove Fermat's two squares theorem. [5]
The graph of an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection over the line y = x. This can be seen by "swapping" x with y. If, in particular, the function is an involution, then its graph is its own reflection. Some basic examples of involutions include the functions These may be composed in various ways to produce additional involutions. For example, if a=0 and b=1 then is an involution, and more generally the function is an involution for constants b and c which satisfy bc ≠ −1. (This is the self-inverse subset of Möbius transformations with a = −d, then normalized to a = 1.)
Other nonlinear examples can be constructed by wrapping an involution g in an arbitrary function h and its inverse, producing , such as:
Other elementary involutions are useful in solving functional equations.
A simple example of an involution of the three-dimensional Euclidean space is reflection through a plane. Performing a reflection twice brings a point back to its original coordinates.
Another involution is reflection through the origin; not a reflection in the above sense, and so, a distinct example.
These transformations are examples of affine involutions.
An involution is a projectivity of period 2, that is, a projectivity that interchanges pairs of points. [6] : 24
Another type of involution occurring in projective geometry is a polarity that is a correlation of period 2. [9]
In linear algebra, an involution is a linear operator T on a vector space, such that T2 = I. Except for in characteristic 2, such operators are diagonalizable for a given basis with just 1s and −1s on the diagonal of the corresponding matrix. If the operator is orthogonal (an orthogonal involution), it is orthonormally diagonalizable.
For example, suppose that a basis for a vector space V is chosen, and that e1 and e2 are basis elements. There exists a linear transformation f that sends e1 to e2, and sends e2 to e1, and that is the identity on all other basis vectors. It can be checked that f(f(x)) = x for all x in V. That is, f is an involution of V.
For a specific basis, any linear operator can be represented by a matrix T. Every matrix has a transpose, obtained by swapping rows for columns. This transposition is an involution on the set of matrices. Since elementwise complex conjugation is an independent involution, the conjugate transpose or Hermitian adjoint is also an involution.
The definition of involution extends readily to modules. Given a module M over a ring R, an R endomorphism f of M is called an involution if f2 is the identity homomorphism on M.
Involutions are related to idempotents; if 2 is invertible then they correspond in a one-to-one manner.
In functional analysis, Banach *-algebras and C*-algebras are special types of Banach algebras with involutions.
In a quaternion algebra, an (anti-)involution is defined by the following axioms: if we consider a transformation then it is an involution if
An anti-involution does not obey the last axiom but instead
This former law is sometimes called antidistributive. It also appears in groups as (xy)−1 = (y)−1(x)−1. Taken as an axiom, it leads to the notion of semigroup with involution, of which there are natural examples that are not groups, for example square matrix multiplication (i.e. the full linear monoid) with transpose as the involution.
In ring theory, the word involution is customarily taken to mean an antihomomorphism that is its own inverse function. Examples of involutions in common rings:
In group theory, an element of a group is an involution if it has order 2; that is, an involution is an element a such that a ≠ e and a2 = e, where e is the identity element. [10] Originally, this definition agreed with the first definition above, since members of groups were always bijections from a set into itself; that is, group was taken to mean permutation group . By the end of the 19th century, group was defined more broadly, and accordingly so was involution.
A permutation is an involution if and only if it can be written as a finite product of disjoint transpositions.
The involutions of a group have a large impact on the group's structure. The study of involutions was instrumental in the classification of finite simple groups.
An element x of a group G is called strongly real if there is an involution t with xt = x−1 (where xt = x−1 = t−1 ⋅ x ⋅ t).
Coxeter groups are groups generated by a set S of involutions subject only to relations involving powers of pairs of elements of S. Coxeter groups can be used, among other things, to describe the possible regular polyhedra and their generalizations to higher dimensions.
The operation of complement in Boolean algebras is an involution. Accordingly, negation in classical logic satisfies the law of double negation : ¬¬A is equivalent to A.
Generally in non-classical logics, negation that satisfies the law of double negation is called involutive. In algebraic semantics, such a negation is realized as an involution on the algebra of truth values. Examples of logics that have involutive negation are Kleene and Bochvar three-valued logics, Łukasiewicz many-valued logic, the fuzzy logic 'involutive monoidal t-norm logic' (IMTL), etc. Involutive negation is sometimes added as an additional connective to logics with non-involutive negation; this is usual, for example, in t-norm fuzzy logics.
The involutiveness of negation is an important characterization property for logics and the corresponding varieties of algebras. For instance, involutive negation characterizes Boolean algebras among Heyting algebras. Correspondingly, classical Boolean logic arises by adding the law of double negation to intuitionistic logic. The same relationship holds also between MV-algebras and BL-algebras (and so correspondingly between Łukasiewicz logic and fuzzy logic BL), IMTL and MTL, and other pairs of important varieties of algebras (respectively, corresponding logics).
In the study of binary relations, every relation has a converse relation. Since the converse of the converse is the original relation, the conversion operation is an involution on the category of relations. Binary relations are ordered through inclusion. While this ordering is reversed with the complementation involution, it is preserved under conversion.
The XOR bitwise operation with a given value for one parameter is an involution on the other parameter. XOR masks in some instances were used to draw graphics on images in such a way that drawing them twice on the background reverts the background to its original state.
Two special cases of this, which are also involutions, are the bitwise NOT operation which is XOR with an all-ones value, and stream cipher encryption, which is an XOR with a secret keystream.
This predates binary computers; practically all mechanical cipher machines implement a reciprocal cipher, an involution on each typed-in letter. Instead of designing two kinds of machines, one for encrypting and one for decrypting, all the machines can be identical and can be set up (keyed) the same way. [11]
Another involution used in computers is an order-2 bitwise permutation. For example. a color value stored as integers in the form (R, G, B), could exchange R and B, resulting in the form (B, G, R): f(f(RGB)) = RGB, f(f(BGR)) = BGR.
Legendre transformation, which converts between the Lagrangian and Hamiltonian, is an involutive operation.
Integrability, a central notion of physics and in particular the subfield of integrable systems, is closely related to involution, for example in context of Kramers–Wannier duality.
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
The imaginary unit or unit imaginary number is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ. With multiple inputs, XOR is true if and only if the number of true inputs is odd.
In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", written , or . It is interpreted intuitively as being true when is false, and false when is true. For example, if is "Spot runs", then "not " is "Spot does not run".
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .
In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.
In mathematics, a reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis or plane of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.
In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse of integral operators in 1903. The terms pseudoinverse and generalized inverse are sometimes used as synonyms for the Moore–Penrose inverse of a matrix, but sometimes applied to other elements of algebraic structures which share some but not all properties expected for an inverse element.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. In other cases the dual of the dual – the double dual or bidual – is not necessarily identical to the original. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.
In mathematics, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is an invertible antihomomorphism, i.e. an antiisomorphism, from a set to itself. From bijectivity it follows that antiautomorphisms have inverses, and that the inverse of an antiautomorphism is also an antiautomorphism.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set. Alternative names are switching function, used especially in older computer science literature, and truth function, used in logic. Boolean functions are the subject of Boolean algebra and switching theory.
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation,
In category theory, a branch of mathematics, a dagger category is a category equipped with a certain structure called dagger or involution. The name dagger category was coined by Peter Selinger.
In geometry, a point reflection is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry. In the Euclidean plane, a point reflection is the same as a half-turn rotation, while in three-dimensional Euclidean space a point reflection is an improper rotation which preserves distances but reverses orientation. A point reflection is an involution: applying it twice is the identity transformation.
T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group:
This is a glossary for the terminology in a mathematical field of functional analysis.