This article may be too technical for most readers to understand.(April 2024) |
| |
Names | |
---|---|
Preferred IUPAC name Iodoacetic acid | |
Other names 2-Iodoacetic acid | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.000.537 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
ICH2CO2H | |
Molar mass | 185.948 g·mol−1 |
Melting point | 81 °C (178 °F; 354 K) |
Boiling point | 208 °C (406 °F; 481 K) |
Acidity (pKa) | 3.12 [1] |
Hazards | |
GHS labelling: [2] | |
Danger | |
H301, H314 | |
P260, P280, P301+P310+P330, P303+P361+P353, P305+P351+P338, P310, P331 | |
Safety data sheet (SDS) | Oxford MSDS |
Related compounds | |
Related compounds | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Iodoacetic acid is an organic compound with the chemical formula I C H 2CO 2H. It is a derivative of acetic acid. It is a toxic compound, because, like many alkyl halides, it is an alkylating agent.
It reacts with cysteine residues in proteins. It is often used to modify −SH groups to prevent the re-formation of disulfide bonds after the reduction of cystine residues to cysteine during protein sequencing.
In 1929, Dr. Einar Lundsgaard (1899-1968) discovered that muscle poisoned in vitro with iodoacetic acid is unable to produce lactate as glycolysis from muscle glycogen is blocked, causing the muscle to result in an electrically silent contracture. [3] [4] [ clarification needed ] It was remembering this discovery, that lead Dr. Brian McArdle in 1951, to speculate that one of his patients that had electromyographically silent muscle contractures brought on by high-intensity aerobic activity and anaerobic activity must have a defective muscle glycogen mechanism. [5]
Iodoacetate is an irreversible inhibitor of all cysteine peptidases, with the mechanism of inhibition occurring from alkylation of the catalytic cysteine residue (see schematic). In comparison with its amide derivative, iodoacetamide, iodoacetate reacts substantially slower. This observation appears contradictory to standard chemical reactivity, however the presence of a favourable interaction between the positive imidazolium ion of the catalytic histidine and the negatively charged carboxyl-group of the iodoacetic acid is the reason for the increased activity of iodoacetamide. [6]
Several studies have shown iodoacetate has anti-tumor effects. In 2002 Fawzia Fahim showed that "a single IAA treatment of tumor-bearing mice significantly increased the levels of plasma lactate dehydrogenase (LDH) activity, while it also significantly decreased the levels of plasma glucose and liver total protein, RNA and DNA, compared to normal controls." [7] In 1975 Melvin S. Rhein, Joyce A. Filppi and Victor S. Moore showed that iodoacetate improved the immune response of bone marrow. [8] In 1966 Charles A. Apffel, Barry G. Arnason & John H. Peters showed anti-tumor activity for iodoacetate. [9]
Iodide is a naturally occurring ion that can be found in many source waters and it is easily oxidized by wastewater disinfectants. One of the products of iodide oxidation is hypoiodous acid or hypoiodite (HOI and OI− respectively) which are capable of reacting with background organic materials to generate iodinated disinfection by-products (DBPs) including iodoacetic acid. In a study performed by Plewa, et al., IAA was determined to be one of the most cytotoxic of those studied, with a median lethal dose on the order of magnitude of 10−5 M. It was the most genotoxic of more than 60 DBPs studied and is the most genotoxic DBP identified thus far. [10] Iodoacetic acid has exhibited traits indicating it as a potential carcinogen, however, it has not been proven to be carcinogenic. [11] The trend continues in teratogenicity, with iodoacetic acid's potency surpassing that of its brominated and chlorinated analogs. [12] Its toxicity correlates to its ability as an alkylating agent, which will modify cysteine residues in proteins. [13] Monohaloacetic acids are the most toxic, with toxicity increasing with halogen size. Iodoacetic acid is more toxic than bromoacetic acid and much more toxic than chloroacetic acid. [14]
Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, but both D and L-cysteine are found in nature. L‑Cysteine is a protein monomer in all biota, and D-cysteine acts as a signaling molecule in mammalian nervous systems. Cysteine is named after its discovery in urine, which comes from the urinary bladder or cyst, from Greek κύστη kýsti, "bladder".
Acetaldehyde dehydrogenases are dehydrogenase enzymes which catalyze the conversion of acetaldehyde into acetyl-CoA. This can be summarized as follows:
Dehydroalanine is a dehydroamino acid. It does not exist in its free form, but it occurs naturally as a residue found in peptides of microbial origin. As an amino acid residue, it is unusual because it has an unsaturated backbone.
Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the conversion of L-cysteine to cysteine sulfinic acid. CDO plays an important role in cysteine catabolism, regulating intracellular levels of cysteine and responding changes in cysteine availability. As such, CDO is highly regulated and undergoes large changes in concentration and efficiency. It oxidizes cysteine to the corresponding sulfinic acid by activation of dioxygen, although the exact mechanism of the reaction is still unclear. In addition to being found in mammals, CDO also exists in some yeast and bacteria, although the exact function is still unknown. CDO has been implicated in various neurodegenerative diseases and cancers, which is likely related to cysteine toxicity.
Iodoacetamide (IAA) is an organic compound with the chemical formula ICH2CONH2. It is an alkylating agent used for peptide mapping purposes. Its actions are similar to those of iodoacetate. It is commonly used to bind covalently with the thiol group of cysteine so the protein cannot form disulfide bonds. It is also used in ubiquitin studies as an inhibitor of deubiquitinase enzymes (DUBs) because it alkylates the cysteine residues at the DUB active site.
Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. Various esters of phorbol have important biological properties, the most notable of which is the capacity to act as tumor promoters through activation of protein kinase C. They mimic diacylglycerols, glycerol derivatives in which two hydroxyl groups have reacted with fatty acids to form esters. The most common and potent phorbol ester is 12-O-tetradecanoylphorbol-13-acetate (TPA), also called phorbol-12-myristate-13-acetate (PMA), which is used as a biomedical research tool in contexts such as models of carcinogenesis.
N-acetyltransferase (NAT) is an enzyme that catalyzes the transfer of acetyl groups from acetyl-CoA to arylamines, arylhydroxylamines and arylhydrazines. They have wide specificity for aromatic amines, particularly serotonin, and can also catalyze acetyl transfer between arylamines without CoA. N-acetyltransferases are cytosolic enzymes found in the liver and many tissues of most mammalian species, except the dog and fox, which cannot acetylate xenobiotics.
Benzotrichloride (BTC), also known as α,α,α-trichlorotoluene, phenyl chloroform or (trichloromethyl)benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless or somewhat yellowish, viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.
An alkylating antineoplastic agent is an alkylating agent used in cancer treatment that attaches an alkyl group (CnH2n+1) to DNA.
Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.
In enzymology, a methylated-DNA-[protein]-cysteine S-methyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a retinal dehydrogenase, also known as retinaldehyde dehydrogenase (RALDH), catalyzes the chemical reaction converting retinal to retinoic acid. This enzyme belongs to the family of oxidoreductases, specifically the class acting on aldehyde or oxo- donor groups with NAD+ or NADP+ as acceptor groups, the systematic name being retinal:NAD+ oxidoreductase. This enzyme participates in retinol metabolism. The general scheme for the reaction catalyzed by this enzyme is:
Nodularins are potent toxins produced by the cyanobacterium Nodularia spumigena, among others. This aquatic, photosynthetic cyanobacterium forms visible colonies that present as algal blooms in brackish water bodies throughout the world. The late summer blooms of Nodularia spumigena are among the largest cyanobacterial mass occurrences in the world. Cyanobacteria are composed of many toxic substances, most notably of microcystins and nodularins: the two are not easily differentiated. A significant homology of structure and function exists between the two, and microcystins have been studied in greater detail. Because of this, facts from microcystins are often extended to nodularins.
Disinfection by-products (DBPs) are organic and inorganic compounds resulting from chemical reactions between organic and inorganic substances such as contaminates and chemical treatment disinfection agents, respectively, in water during water disinfection processes.
Chlornaphazine, a derivative of 2-naphthylamine, is a nitrogen mustard that was developed in the 1950s for the treatment of polycythemia and Hodgkin's disease. However, a high incidence of bladder cancers in patients receiving treatment with chlornaphthazine led to use of the drug being discontinued.
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria. It is the most toxic of the microcystins.
Chromium toxicity refers to any poisonous toxic effect in an organism or cell that results from exposure to specific forms of chromium—especially hexavalent chromium. Hexavalent chromium and its compounds are toxic when inhaled or ingested. Trivalent chromium is a trace mineral that is essential to human nutrition. There is a hypothetical risk of genotoxicity in humans if large amounts of trivalent chromium were somehow able to enter living cells, but normal metabolism and cell function prevent this.
Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.
Glycidamide is an organic compound with the formula H2NC(O)C2H3O. It is a colorless oil. Structurally, it contains adjacent amides and epoxide functional groups. It is a bioactive, potentially toxic or even carcinogenic metabolite of acrylonitrile and acrylamide. It is a chiral molecule.
Ethylene bis(iodoacetate), also known as S-10, is the iodoacetate ester of ethylene glycol. It's an alkylating agent that has been studied as an anticancer drug.