Jinfengopteryginae

Last updated

Jinfengopterygines
Temporal range:
Early CretaceousLate Cretaceous, 122–66  Ma
Jinfengopteryx elegans 2.JPG
Holotype of the type species, Jinfengopteryx elegans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Family: Troodontidae
Subfamily: Jinfengopteryginae
Turner et al., 2012
Type species
Jinfengopteryx elegans
Ji et al., 2005
Genera

Jinfengopteryginae is a subfamily of bird-like theropod dinosaurs known from the Cretaceous of Eurasia. This group includes relatively few genera, with members discovered in 2005 but the name erected in 2012. Like other troodontids, this group of dinosaurs resided in the Paraves potentially close to the Avialae.

Contents

Description

Jinfengopterygines were relatively small sized troodontids ranging from about 0.5–2 m (1.8–6.6 ft), [1] [2] and like other troodontids had a pair of sickle claws on each foot. These animals were feathered, as most troodontids presumably were, as shown in the type species, with typical feathering around the body an neck and especially long, vaned feathers spanning the tail. Studies on these animals' flight capabilities have determined that they would be approximately as proficient as Microraptor and Rahonavis . [3] Although most other troodontids are believed to be primarily carnivorous, specimens of this subfamily show potential omnivory, being what are possibly plant seeds in the gut of Jinfengopteryx , although these have also been interpreted to be developing eggs or pennaceous follicles. [4] However, omnivory in troodontids is not unheard of, as studies on jaw morphology in Troodon suggest. [5]

History of classification

The first representative of this group, Jinfengopteryx elegans , was discovered in the Huajiying Formation in Hebei, China in 2005, dating approximately 122 million years old. [6] Upon discovery, it was thought to be a member of the Archaeopterygidae, being the most basal avian alongside Archaeopteryx and the dubious Wellnhoferia , and was further maintained as belonging to the family in 2007. [7] In 2006, Chiappe, Xu, and Norell suggested that it belonged to the Troodontidae based on the presence of an enlarged second toe claw, general body plan, and dental morphology. [8] [9] Jinfengopteryx was subsequently placed in the Troodontidae in 2007 in an analysis of the relationships between troodontids, dromaeosaurids, and early birds by Turner and Norell et al. [10]

Finally, in 2012, Turner, Makovicky, and Norell erected the subfamily Jinfengopteryginae to include Jinfengopteryx and the as-of-yet unnamed specimen IGM 100/1226, with large antorbital fenestrae and a bifurcated jugal being the group's synapomorphies. [11] In 2014, Brusatte, Lloyd, Wang, and Norell published an analysis on Coelurosauria, based on data from Turner et al. (2012), including many basal troodontid species but failing to resolve many interrelationships resulting in a polytomy between IGM 100/44, Byronosaurus , Xixiasaurus , Sinovenatorinae, Jinfengopteryginae, and the derived Sinornithoides +Troodontinae clade. [12] This analysis was added onto in 2017 by Shen et al. after the discovery of Daliansaurus , who included more taxa and reduced polytomies. Their analysis of Deinonychosauria is shown below: [13]

Deinonychosauria  

Dromaeosauridae

  Troodontidae  

Eosinopteryx

Anchiornis

Aurornis

Xiaotingia

IGM 100/44

Byronosaurus

Xixiasaurus

 Jinfengopteryginae 

IGM 100/1323 ( Almas )

IGM 100/1128

Jinfengopteryx

  Sinovenatorinae  

Mei

Sinovenator

Daliansaurus

Sinusonasus

Sinornithoides

Troodon

Zanabazar

Saurornithoides

In a 2021 phylogenetic analysis by Sellés et al. after the discovery of Tamarro , the second member referred to this group, Jinfengopteryginae was found to be the sister group to Sinovenatorinae, and Liaoningvenator , Philovenator , and the unnamed specimens IGM 100/1128 and IGM 100/140 were found to belong to this group as well. Their findings are as follows: [14]

Troodontidae

Geminiraptor

Hesperornithoides

Sinovenatorinae

Jinfengopteryginae

Jinfengopteryx

Liaoningvenator

Philovenator

IGM 100/1128

IGM 100/140

Tamarro

IGM 100/44

Xixiasaurus

Sinusonasus

Tochisaurus

Daliansaurus

Gobivenator

Troodontinae

See also

Related Research Articles

<span class="mw-page-title-main">Troodontidae</span> Extinct family of bird-like dinosaurs

Troodontidae is a clade of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and incomplete and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens, have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.

<span class="mw-page-title-main">Maniraptora</span> Clade of dinosaurs

Maniraptora is a clade of coelurosaurian dinosaurs which includes the birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Dromaeosauridae, Troodontidae, Oviraptorosauria, and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period, and survive today as living birds.

<i>Mei long</i> Extinct species of dinosaur

Mei is a genus of duck-sized troodontid dinosaur first unearthed by paleontologists from the Yixian Formation in Liaoning, China in 2004. Mei lived during the Early Cretaceous period. The binomial name of its only species, Mei long, means sleeping dragon.

<i>Saurornithoides</i> Extinct genus of dinosaurs

Saurornithoides is a genus of troodontid maniraptoran dinosaur, which lived during the Late Cretaceous period. These creatures were predators, which could run fast on their hind legs and had excellent sight and hearing. The name is derived from the Greek stems saur~ (lizard), ornith~ (bird) and eides (form), referring to its bird-like skull.

<i>Byronosaurus</i> Extinct genus of dinosaurs

Byronosaurus is a genus of troodontid dinosaur from the Late Cretaceous Period of Mongolia.

<i>Adasaurus</i> Extinct genus of dinosaurs

Adasaurus is a genus of dromaeosaurid dinosaur that lived in Asia during the Late Cretaceous period about 70 million years ago. The genus is known from two partial specimens found in the Nemegt Formation of Mongolia that were partially described in 1983 by the paleontologist Rinchen Barsbold.

<i>Jinfengopteryx</i> Theropod dinosaur genus

Jinfengopteryx is a genus of maniraptoran dinosaur. It was found in the Qiaotou Member of the Huajiying Formation of Hebei Province, China, and is therefore of uncertain age. The Qiaotou Member may correlate with the more well-known Early Cretaceous Yixian Formation, and so probably dates to around 122 Ma ago.

<i>Sinornithoides</i> Extinct genus of dinosaurs

Sinornithoides is a genus of troodontid theropod dinosaurs containing the single species Sinornithoides youngi. S. youngi lived during the Early Cretaceous. It measured approximately one meter long (3.3 ft). It lived in Inner Mongolia, China, and probably ate invertebrates and other small prey. They lived in what is now Mongolia, which was part of Laurasia.

<i>Citipati</i> Genus of oviraptorid dinosaur

Citipati is a genus of oviraptorid dinosaur that lived in Asia during the Late Cretaceous period, about 75 million to 71 million years ago. It is mainly known from the Ukhaa Tolgod locality at the Djadochta Formation, where the first remains were collected during the 1990s. The genus and type species Citipati osmolskae were named and described in 2001. A second species from the adjacent Zamyn Khondt locality may also exist. Citipati is one of the best-known oviraptorids thanks to a number of well-preserved specimens, including individuals found in brooding positions atop nests of eggs, though most of them were initially referred to the related Oviraptor. These nesting specimens have helped to solidify the link between non-avian dinosaurs and birds.

<i>Sinovenator</i> Extinct genus of dinosaurs

Sinovenator is a genus of troodontid dinosaur from China. It is from the early Cretaceous Period.

<span class="mw-page-title-main">Archaeopterygidae</span> Family of dinosaurs

Archaeopterygidae is a group of maniraptoran dinosaurs, known from the latest Jurassic and earliest Cretaceous of Europe. In most current classifications, it contains only the genera Archaeopteryx and Wellnhoferia. As its name suggests, Protarchaeopteryx was also once referred to this group, but most paleontologists now consider it an oviraptorosaur. Other referred genera, like Jurapteryx, Wellnhoferia, and "Proornis", are probably synonymous with Archaeopteryx or do not belong into this group. Jinfengopteryx was originally described as an archaeopterygid, though it was later shown to be a troodontid. A few studies have recovered Anchiornis and Xiaotingia to also be members of the Archaeopterygidae, though most subsequent analyses have failed to arrive at the same result. Uncertainties still exist, however, and it may not be possible to confidently state whether archaeopterygids are more closely related to modern birds or to deinonychosaurs barring new and better specimens of relevant species. Teeth attributable to archaeopterygids are known from the earliest Cretaceous (Berriasian) Cherves-de-Cognac locality and the Angeac-Charente bonebed of France.

<span class="mw-page-title-main">Paraves</span> Clade of all dinosaurs that are more closely related to birds than to oviraptorosaurs

Paraves are a widespread group of theropod dinosaurs that originated in the Middle Jurassic period. In addition to the extinct dromaeosaurids, troodontids, anchiornithids, and possibly the scansoriopterygids, the group also contains the avialans, which include diverse extinct taxa as well as the over 10,000 species of living birds. Basal members of Paraves are well known for the possession of an enlarged claw on the second digit of the foot, which was held off the ground when walking in some species. A number of differing scientific interpretations of the relationships between paravian taxa exist. New fossil discoveries and analyses make the classification of Paraves an active subject of research.

<i>Linhevenator</i> Extinct genus of dinosaurs

Linhevenator is a genus of short-armed troodontid theropod dinosaur from the Late Cretaceous (Campanian) Bayan Mandahu Formation of Bayan Mandahu, Inner Mongolia, China.

<i>Gobivenator</i> Extinct genus of dinosaurs

Gobivenator is an extinct genus of troodontid theropod dinosaur known from the late Campanian Djadokhta Formation of central Gobi Desert, Mongolia. It contains a single species, Gobivenator mongoliensis. G. mongoliensis is known from a single individual, which represents the most complete specimen of a Late Cretaceous troodontid currently known.

<span class="mw-page-title-main">Timeline of troodontid research</span> Events in the history of paleontology

This timeline of troodontid research is a chronological listing of events in the history of paleontology focused on the troodontids, a group of bird-like theropod dinosaurs including animals like Troodon. Troodontid remains were among the first dinosaur fossils to be reported from North America after paleontologists began performing research on the continent, specifically the genus Troodon itself. Since the type specimen of this genus was only a tooth and Troodon teeth are unusually similar to those of the unrelated thick-headed pachycephalosaurs, Troodon and its relatives would be embroiled in taxonomic confusion for over a century. Troodon was finally recognized as distinct from the pachycephalosaurs by Phil Currie in 1987. By that time many other species now recognized as troodontid had been discovered but had been classified in the family Saurornithoididae. Since these families were the same but the Troodontidae named first, it carries scientific legitimacy.

<span class="mw-page-title-main">Timeline of dromaeosaurid research</span>

This timeline of dromaeosaurid research is a chronological listing of events in the history of paleontology focused on the dromaeosaurids, a group of sickle-clawed, bird-like theropod dinosaurs including animals like Velociraptor. Since the Native Americans of Montana used the sediments of the Cloverly Formation to produce pigments, they may have encountered remains of the dromaeosaurid Deinonychus hundreds of years before these fossils came to the attention of formally trained scientists.

<i>Jianianhualong</i> Extinct genus of dinosaurs

Jianianhualong is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, Jianianhualong tengi, named in 2017 by Xu Xing and colleagues based on an articulated skeleton preserving feathers. The feathers at the middle of the tail of Jianianhualong are asymmetric, being the first record of asymmetrical feathers among the troodontids. Despite aerodynamic differences from the flight feathers of modern birds, the feathers in the tail vane of Jianianhualong could have functioned in drag reduction whilst the animal was moving. The discovery of Jianianhualong supports the notion that asymmetrical feathers appeared early in the evolutionary history of the Paraves.

<i>Daliansaurus</i> Extinct genus of dinosaurs

Daliansaurus is a genus of small troodontid theropod dinosaur, measuring approximately 1 metre long, from the Early Cretaceous of China. It contains a single species, D. liaoningensis, named in 2017 by Shen and colleagues from a nearly complete skeleton preserved in three dimensions. Daliansaurus is unusual in possessing an enlarged claw on the fourth digit of the foot, in addition to the "sickle claw" found on the second digit of the feet of most paravians. It also has long metatarsal bones, and apparently possesses bird-like uncinate processes. In the Lujiatun Beds of the Yixian Formation, a volcanically-influenced region with a cold climate, Daliansaurus lived alongside its closest relatives - Sinovenator, Sinusonasus, and Mei, with which it forms the group Sinovenatorinae.

<i>Liaoningvenator</i> Extinct genus of dinosaurs

Liaoningvenator is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, L. curriei, named after paleontologist Phillip J. Currie in 2017 by Shen Cai-Zhi and colleagues from an articulated, nearly complete skeleton, one of the most complete troodontid specimens known. Shen and colleagues found indicative traits that placed Liaoningvenator within the Troodontidae. These traits included its numerous, small, and closely packed teeth, as well as the vertebrae towards the end of its tail having shallow grooves in place of neural spines on their top surfaces.

References

  1. "New Bird-Like Dinosaur Identified in Spain". Sci News .
  2. Ji, Qiang; Ji, Shu'an; U, Junchang; You, Hailu; Chen, Wen; Liu, Yongqing; Liu, Yanxue (March 17, 2005). "First avialian bird from China(Jinfengopteryx elegans gen. et sp. nov.)". Geological Bulletin of China. 24 (3): 197–210 via caod.oriprobe.com.
  3. Pei, R.; Pittman, M.; Goloboff, P. A.; Dececchi, T. A.; Habib, M. B.; Kaye, T. G.; Larsson, H. C. E.; Norell, M. A.; Brusatte, S. L.; Xu, X. (2020-04-17). "Powered flight potential approached by wide range of close avian relatives but achieved selectively". bioRxiv   10.1101/2020.04.17.046169 .
  4. Ji Qiang; Ji Shu'an; Lu Junchang; You Hailu; Chen Wen; Liu Yongqing; Liu Yanxue (2005). "First avialian bird from China (Jinfengopteryx elegans gen. et sp. nov.)". Geological Bulletin of China. 24 (3): 197–205.
  5. Holtz, T.R. Jr.; Brinkman, D.L.; Chandler, C.L. (1998). "Denticle morphometrics and a possibly omnivorous feeding habit for the theropod dinosaur Troodon" (PDF). Gaia. 15: 159–166.
  6. Jin Fan; Zhang FuCheng; Li ZhiHeng; Zhang JiangYong; Li Chun; Zhou ZhongHe (2008). "On the horizon of Protopteryx and the early vertebrate fossil assemblages of the Jehol Biota". Chinese Science Bulletin. 53 (18): 2820–2827. Bibcode:2008SciBu..53.2820J. doi:10.1007/s11434-008-0209-5.
  7. Ji S., and Ji, Q. (2007). "Jinfengopteryx compared to Archaeopteryx, with comments on the mosaic evolution of long-tailed avialan birds." Acta Geologica Sinica (English Edition), 81(3): 337–343.
  8. Chiappe, L.M. Glorified Dinosaurs: The Origin and Early Evolution of Birds. Sydney: UNSW Press.
  9. Xu and Norell (2006). "Non-avian dinosaur fossils from the Lower Cretaceous Jehol Group of western Liaoning, China." Geological Journal, 41(3–4): 419–437.
  10. Turner, Alan H.; Pol, Diego; Clarke, Julia A.; Erickson, Gregory M.; Norell, Mark (2007). "A basal dromaeosaurid and size evolution preceding avian flight" (PDF). Science. 317 (5843): 1378–1381. Bibcode:2007Sci...317.1378T. doi: 10.1126/science.1144066 . PMID   17823350. S2CID   2519726.
  11. Turner, Alan H.; Makovicky, Peter J.; Norell, Mark A. (2012). "A review of dromaeosaurid systematics and paravian phylogeny" (pdf). Bulletin of the American Museum of Natural History. 317: 1–206. doi:10.1206/748.1. hdl: 2246/6352 . S2CID   83572446.
  12. Brusatte, S. L.; Lloyd, G. T.; Wang, S. C.; Norell, M. A. (2014). "Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition" (PDF). Current Biology. 24 (20): 2386–92. doi: 10.1016/j.cub.2014.08.034 . PMID   25264248.
  13. Caizhi Shen; Junchang Lü; Sizhao Liu; Martin Kundrát; Stephen L. Brusatte; Hailong Gao (2017). "A new troodontid dinosaur from the Lower Cretaceous Yixian Formation of Liaoning Province, China". Acta Geologica Sinica (English Edition). 91 (3): 763–780. doi:10.1111/1755-6724.13307. hdl: 20.500.11820/dc010682-fce0-4db4-bef6-7b2b29f5be8a . S2CID   129939153.
  14. Sellés, A. G.; Vila, B.; Brusatte, S. L.; Currie, P. J.; Galobart, A. (2021). "A fast-growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe". Scientific Reports. 11 (1): 4855. Bibcode:2021NatSR..11.4855S. doi: 10.1038/s41598-021-83745-5 . PMC   7921422 . PMID   33649418.