Deinonychosauria

Last updated

Contents

Deinonychosaurs
Temporal range: Middle JurassicLate Cretaceous, 167–66  Ma
Deinonychosauria diversity.png
Montage of putative deinonychosaurians
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Clade: Pennaraptora
Clade: Paraves
Clade: Deinonychosauria
Colbert & Russell, 1969
Subclades

Deinonychosauria is a clade of paravian dinosaurs which lived from the Late Jurassic to the Late Cretaceous periods. Fossils have been found across the globe in North America, Europe, Africa, Asia, South America, and Antarctica, [2] with fossilized teeth giving credence to the possibility that they inhabited Australia as well. [3] This group of dinosaurs are known for their sickle-shaped toe claws and features in the shoulder bones. [4]

Deinonychosauria is commonly defined as all dinosaurs more closely related to dromaeosaurids (such as Deinonychus antirrhopus) than to birds (such as Passer domesticus ). It traditionally includes the families Dromaeosauridae and Troodontidae, which each possess enlarged "sickle claws". [5] However, troodontids may instead be closer to birds than to dromaeosaurids, so they would lie outside Deinonychosauria under that hypothesis. This would also render Deinonychosauria equivalent to Dromaeosauridae, under a broad definition of the family. [6] As the structure of the paravian family is still undergoing debate, the components of Deinonychosauria is unstable beyond dromaeosaurids. [1]

Systematics

In 1866 Ernst Haeckel created the now-deprecated subclass of birds known as Sauriurae (meaning "lizard tails" in Greek). It was intended to include Archaeopteryx and distinguish it from all other birds then known, which he grouped in the sister-group Ornithurae ("bird tails"). The distinction Haeckel referred to in this name is that Archaeopteryx possesses a long, reptile-like tail, while all other birds known to him had short tails with few vertebrae, fused at the end into a pygostyle. [7] The unit was not much referred to, and when Hans Friedrich Gadow in 1893 erected Archaeornithes for basically the same fossils, this became the common name for the early reptile-like grade of birds. This was followed by Alfred Romer (1933) and subsequent authors through most of the 20th century. [8] According to Romer, the Archaeornithes are characterised by having clawed wings, a reptilian style ribcage without a large carina and the presence of a long, bony tail. [9] The known members of the group by the time of its erection were Archaeopteryx and Archaeornis. [10] The two are now thought to represent a single species, Archaeopteryx lithographica, the Archaeornis being the Berlin specimen of Archaeopteryx. [11] It was in 1888 the German anatomist Max Fürbringer created the order Archaeopterygiformes, [12] though the unit was not used as much as Archaeornithes. [8] [9] [13] Due to the popularity of Archaeornithes as well as Archaeopterygidae being recognized as the only family in this clade, Sauriurae, Archaeornithes, and Archaeopterygiformes are considered to be redundant arbitrary names that can be synonymous. [13]

During the dinosaur renaissance the American palaeontologist John Ostrom had published a series of papers arguing that birds are highly derived dinosaurs, after comparisons between the then-newly discovered Deinonychus and Archaeopteryx and noting their similarities in the wrist and shoulder bones. [4] In 1988 American freelance researcher and artist Gregory S. Paul wrote Predatory Dinosaurs of the World, one of the most important works devoted to theropods ever made. Paul made several radical classifications within the group, in one of which he classified dromaeosaurids in Archaeopterygidae. [14] Paul states that:

Many theropods have been united into new groups... but the placement of Archaeopteryx and the sickle-clawed dromaeosaurs in the same family is by far the most radical–yet it is also one of the most necessary... how alike, in detail after detail, dromaeosaurs and Archaeopteryx were. [14]

The name Deinonychosauria was coined by Ned Colbert and Dale Russell in 1969, and defined as a clade (all theropods closer to dromaeosaurids than to birds) by Jacques Gauthier in 1986. Through the early 2000s, the consensus among paleontologists was that dromaeosaurids were most closely related to the troodontids, and with the troodontids, deinonychosaurians were turned into the sister taxon to avialans, and therefore the closest relatives of avialan birds. [15] In 2012, Turner et al. conducted a phylogenetic analysis (using a dataset of 474 characters scored for 111 taxa) which found Deinonychosauria to be monophyletic. [5]

However, several more recent studies have cast doubt on the hypothesis that dromaeosaurids and troodontids were more closely related to each other than either was to birds. A more robust 2013 study by Godefroit et al. (using a dataset of 1,500 characters scored for 358 taxa) found that troodontids were possibly more closely related to birds than to dromaeosaurids; forcing troodontids to remain in a monophyletic Deinonychosauria required four extra steps in the analysis, making this result less likely, but not implausible. [6] [16] Because Deinonychosauria was originally defined as all animals closer to dromaeosaurids than to birds without specific reference to troodontids, Deinonychosauria is a synonym of Dromaeosauridae if Troodontidae is closer to birds. [16]

With the description in 2019 of the Late Jurassic genus Hesperornithoides , Hartman et al., using every named Mesozoic maniraptoromorph (with the addition of 28 unnamed specimens), which they scored 700 characters and 501 operational taxonomic units, found that most of the anchiornithids are members of Archaeopterygidae, Halszkaraptorinae and Unenlagiinae are in a redefined family Unenlagiidae, and a Dromaeosauridae sensu stricto is the sister taxon of Troodontidae. [1] The authors opted for Deinonychosauria (defined as dinosaurs closer to Deinonychus antirrhopus than to Passer domesticus ) over "Archaeopterygiformes". [1]

Deinonychosauria

In a study conducted in 2020, Archaeopteryx was recovered as an avialan. [17]

Description

Like other theropods, deinonychosaurs were bipedal; that is, they walked on their two hind legs. However, whereas most theropods walked with three toes contacting the ground, fossilized footprint tracks confirm that most deinonychosaurs held the second toe off the ground in a hyperextended position, with only the third and fourth toes bearing the weight of the animal. This is called functional didactyly. [18] The enlarged second toe bore an unusually large, curved sickle-shaped claw (held off the ground or 'retracted' when walking). This claw was especially large and flattened from side to side in the large-bodied predatory eudromaeosaurs. [19] The first toe (hallux) was relatively small and angled inward toward the center of the body, but was not fully reversed as in modern birds. [20]

The teeth of deinonychosaurs were curved and serrated, but not blade-like except in some advanced species such as Dromaeosaurus albertensis . The serrations on the front edge of deinonychosaur teeth were very small and fine, while the back edge had serrations which were very large and hooked. [20] Deinonychosaurs generally had long, winged forelimbs, though these were smaller in some troodontids. The wings usually bore three large, flexible claws. [20]

Most deinonychosaurs seem to have been predatory, though some smaller species especially among the troodontids are known to have been at least omnivorous. [21] [20]

Claw function

One of the best-known features of deinonychosaurs is the presence of an enlarged and strongly curved "sickle claw" on a hyper-extendible second toe, modified to hold the sickle claw clear of the ground when walking. While this characteristic claw and its associated modifications to the anatomy of the foot (such as a shortened metatarsus in eudromaeosaurs) had been known since the mid-20th century, their possible functions were the subject mainly of speculation, and few actual studies were published. Initial speculation regarded the claws as slashing implements used to disembowel large prey. In this scenario, the shortened upper foot would serve as an anchor point for powerful tendons to improve kicking ability. However, subsequent studies of the actual claw shape showed that the underside of the claw was only weakly keeled and would not have been an effective cutting instrument. Instead, it appeared to be more of a hooking implement. Manning et al. suggested in 2006 that the claws were similar to crampons and were used for climbing, and in the case of larger species or individuals, climbing up the flanks of very large prey. [22]

A larger study of deinonychosaur claw function, published in 2011 by Fowler and colleagues, concluded that the earlier study by Manning and colleagues was correct and that the "sickle claws" of deinonychosaurs would have been ineffective as cutting weapons. They compared the claw and overall foot anatomy of various deinonychosaurs with modern birds to shed light on their actual function. Fowler and colleagues showed that many modern predatory birds also have enlarged claws on the second toes. In modern raptors, these claws are used to help grip and hold prey of sizes smaller than or equal to the predator, while the birds use their body weight to pin their prey to the ground and eat it alive. [20] Fowler and colleagues suggested that this behavior is entirely consistent with the anatomy of advanced deinonychosaurs like Deinonychus , which had slightly opposing first toes and strong tendons in the toes and foot. This makes it likely that advanced dromaeosaurids also used their claws to puncture and grip their prey to aid in pinning it to the ground, while using shallow wing beats and tail movements to stabilize themselves. [20] Other lines of evidence for this behavior include teeth which had large, hooked serrations only on the back edge (useful in pulling flesh upward rather than slicing it) and large claws on the wings (for greater maneuvering of prey while mantling it with the wings). [20]

In more primitive dromaeosaurids and in troodontids, the feet were not as specialized and the claws were not as large or as hooked. Additionally, the toe joints allowed more range of motion than the simple up-down movements of advanced dromaeosaurids. This makes it likely that these species specialized in smaller prey that could be pinned using only the inner toes, not requiring the feet to be as strong or sturdy. [20]

Related Research Articles

<i>Velociraptor</i> Dromaeosaurid dinosaur genus from the Late Cretaceous

Velociraptor is a genus of small dromaeosaurid dinosaurs that lived in Asia during the Late Cretaceous epoch, about 75 million to 71 million years ago. Two species are currently recognized, although others have been assigned in the past. The type species is V. mongoliensis, named and described in 1924. Fossils of this species have been discovered in the Djadochta Formation, Mongolia. A second species, V. osmolskae, was named in 2008 for skull material from the Bayan Mandahu Formation, China.

<i>Deinonychus</i> Genus of theropod dinosaur

Deinonychus is a genus of dromaeosaurid theropod dinosaur with one described species, Deinonychus antirrhopus. This species, which could grow up to 3.4 meters (11 ft) long, lived during the early Cretaceous Period, about 115–108 million years ago. Fossils have been recovered from the U.S. states of Montana, Utah, Wyoming, and Oklahoma, in rocks of the Cloverly Formation and Antlers Formation, though teeth that may belong to Deinonychus have been found much farther east in Maryland.

<span class="mw-page-title-main">Troodontidae</span> Extinct family of bird-like dinosaurs

Troodontidae is a clade of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and incomplete and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens, have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.

<span class="mw-page-title-main">Dromaeosauridae</span> Family of theropod dinosaurs

Dromaeosauridae is a family of feathered coelurosaurian theropod dinosaurs. They were generally small to medium-sized feathered carnivores that flourished in the Cretaceous Period. The name Dromaeosauridae means 'running lizards', from Greek δρομαῖος (dromaîos), meaning 'running at full speed', 'swift', and σαῦρος (saûros), meaning 'lizard'. In informal usage, they are often called raptors, a term popularized by the film Jurassic Park; several genera include the term "raptor" directly in their name, and popular culture has come to emphasize their bird-like appearance and speculated bird-like behavior.

<i>Pedopenna</i> Extinct genus of dinosaurs

Pedopenna is a genus of small, feathered, maniraptoran dinosaur from the Daohugou Beds in China. It is possibly older than Archaeopteryx, though the age of the Daohugou Beds where it was found is debated. A majority of studies suggest that beds probably date from between the late Middle Jurassic and early Late Jurassic Period.

<i>Buitreraptor</i> Dromaeosaurid dinosaur genus from the Late Cretaceous

Buitreraptor is a genus of dromaeosaurid dinosaurs that lived during the Late Cretaceous of Argentina at the Candeleros Formation. Buitreraptor was described in 2005 and the type species is Buitreraptor gonzalezorum. It was rooster-sized and had a very elongated head with many small teeth.

<i>Adasaurus</i> Extinct genus of dinosaurs

Adasaurus is a genus of dromaeosaurid dinosaur that lived in Asia during the Late Cretaceous period about 70 million years ago. The genus is known from two partial specimens found in the Nemegt Formation of Mongolia that were partially described in 1983 by the paleontologist Rinchen Barsbold.

<i>Jinfengopteryx</i> Theropod dinosaur genus

Jinfengopteryx is a genus of maniraptoran dinosaur. It was found in the Qiaotou Member of the Huajiying Formation of Hebei Province, China, and is therefore of uncertain age. The Qiaotou Member may correlate with the more well-known Early Cretaceous Yixian Formation, and so probably dates to around 122 Ma ago.

<i>Rahonavis</i> Extinct genus of dinosaurs

Rahonavis is a genus of bird-like theropods from the Late Cretaceous of what is now northwestern Madagascar. It is known from a partial skeleton found by Catherine Forster and colleagues in Maevarano Formation rocks at a quarry near Berivotra, Mahajanga Province. Rahonavis was a small predator, at about 70 centimetres (2.3 ft) long and 0.45-2.27 kg, with the typical dromaesaurid-like raised sickle claw on the second toe. It was originally the first African coelurosaur until the discovery of Nqwebasaurus in 2000.

<span class="mw-page-title-main">Archaeopterygidae</span> Family of dinosaurs

Archaeopterygidae is a group of paravian dinosaurs, known from the latest Jurassic and earliest Cretaceous of Europe. In most current classifications, it contains only the genera Archaeopteryx and Wellnhoferia. As its name suggests, Protarchaeopteryx was also once referred to this group, but most paleontologists now consider it an oviraptorosaur. Other referred genera, like Jurapteryx, Wellnhoferia, and "Proornis", are probably synonymous with Archaeopteryx or do not belong into this group. Jinfengopteryx was originally described as an archaeopterygid, though it was later shown to be a troodontid. A few studies have recovered Anchiornis and Xiaotingia to also be members of the Archaeopterygidae, though most subsequent analyses have failed to arrive at the same result. Uncertainties still exist, however, and it may not be possible to confidently state whether archaeopterygids are more closely related to modern birds or to deinonychosaurs barring new and better specimens of relevant species. Teeth attributable to archaeopterygids are known from the earliest Cretaceous (Berriasian) Cherves-de-Cognac locality and the Angeac-Charente bonebed of France.

<i>Shanag</i> Extinct genus of dinosaurs

Shanag is a genus of dromaeosaurid theropod dinosaur from the Early Cretaceous Period of Mongolia.

<span class="mw-page-title-main">Avialae</span> Clade including all birds and their ancestors

Avialae is a clade containing the only living dinosaurs, the birds. It is usually defined as all theropod dinosaurs more closely related to birds (Aves) than to deinonychosaurs, though alternative definitions are occasionally used.

<span class="mw-page-title-main">Paraves</span> Clade of all dinosaurs that are more closely related to birds than to oviraptorosaurs

Paraves are a widespread group of theropod dinosaurs that originated in the Middle Jurassic period. In addition to the extinct dromaeosaurids, troodontids, anchiornithids, and possibly the scansoriopterygids, the group also contains the avialans, which include diverse extinct taxa as well as the over 10,000 species of living birds. Basal members of Paraves are well known for the possession of an enlarged claw on the second digit of the foot, which was held off the ground when walking in some species. A number of differing scientific interpretations of the relationships between paravian taxa exist. New fossil discoveries and analyses make the classification of Paraves an active subject of research.

<span class="mw-page-title-main">Mahakala omnogovae</span> Extinct species of dinosaur

Mahakala is a genus of halszkaraptorine theropod dinosaur from the Campanian-age Upper Cretaceous Djadokhta Formation of Ömnögovi, Mongolia. It is based on a partial skeleton found in the Gobi Desert. Mahakala was a small dromaeosaurid, and its skeleton shows features that are also found in early troodontids and avialans. Despite its late appearance, it is among the most basal dromaeosaurids. Its small size, and the small size of other basal deinonychosaurians, suggests that small size appeared before flight capability in birds. The genus is named for Mahakala, one of eight protector deities (dharmapalas) in Tibetan Buddhism.

<i>Balaur bondoc</i> Extinct specie of dinosaurs

Balaur is a genus of theropod dinosaur from the late Cretaceous period, in what is now Romania. It is the type species of the monotypic genus Balaur, after the balaur, a dragon of Romanian folklore. The specific name bondoc means "stocky", so Balaur bondoc means "stocky dragon" in Romanian. This name refers to the greater musculature that Balaur had compared to its relatives. The genus, which was first described by scientists in August 2010, is known from two partial skeletons.

<i>Xiaotingia</i> Extinct genus of dinosaurs

Xiaotingia is a genus of anchiornithid theropod dinosaur from Middle Jurassic or early Late Jurassic deposits of western Liaoning, China, containing a single species, Xiaotingia zhengi.

<span class="mw-page-title-main">Jinfengopteryginae</span> Extinct subfamily of dinosaurs

Jinfengopteryginae is a subfamily of bird-like theropod dinosaurs known from the Cretaceous of Eurasia. This group includes relatively few genera, with members discovered in 2005 but the name erected in 2012. Like other troodontids, this group of dinosaurs resided in the Paraves potentially close to the Avialae.

<span class="mw-page-title-main">Timeline of troodontid research</span> Events in the history of paleontology

This timeline of troodontid research is a chronological listing of events in the history of paleontology focused on the troodontids, a group of bird-like theropod dinosaurs including animals like Troodon. Troodontid remains were among the first dinosaur fossils to be reported from North America after paleontologists began performing research on the continent, specifically the genus Troodon itself. Since the type specimen of this genus was only a tooth and Troodon teeth are unusually similar to those of the unrelated thick-headed pachycephalosaurs, Troodon and its relatives would be embroiled in taxonomic confusion for over a century. Troodon was finally recognized as distinct from the pachycephalosaurs by Phil Currie in 1987. By that time many other species now recognized as troodontid had been discovered but had been classified in the family Saurornithoididae. Since these families were the same but the Troodontidae named first, it carries scientific legitimacy.

<span class="mw-page-title-main">Timeline of dromaeosaurid research</span>

This timeline of dromaeosaurid research is a chronological listing of events in the history of paleontology focused on the dromaeosaurids, a group of sickle-clawed, bird-like theropod dinosaurs including animals like Velociraptor. Since the Native Americans of Montana used the sediments of the Cloverly Formation to produce pigments, they may have encountered remains of the dromaeosaurid Deinonychus hundreds of years before these fossils came to the attention of formally trained scientists.

<span class="mw-page-title-main">Anchiornithidae</span> Extinct family of dinosaurs

Anchiornithidae is a family of small paravian dinosaurs. Anchiornithids have been classified at varying positions in the paravian tree, with some scientists classifying them as a distinct family, a basal subfamily of Troodontidae, members of Archaeopterygidae, or an assemblage of dinosaurs that are an evolutionary grade within Avialae or Paraves.

References

  1. 1 2 3 4 Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi: 10.7717/peerj.7247 . PMC   6626525 . PMID   31333906.
  2. Case, J.A., Martin, J.E., and Reguero, M. (2007). "A dromaeosaur from the Maastrichtian of James Ross Island and the Late Cretaceous Antarctic dinosaur fauna." Pp. 1–4 in Cooper, A., Raymond, C., and Team, I.E. (eds.), Antarctica: a Keystone in a Changing World – Online Proceedings for the Tenth International Symposium on Antarctic Earth Sciences, U.S. Geological Survey Open-File Report 2007-1047, SRP 083. U.S. Geological Survey, Washington, D.C.
  3. "Oz dromaeosaurs(Re: Megaraptor)".
  4. 1 2 Ostrom, J. (1974). "Archaeopteryx and the Origin of Flight". The Quarterly Review of Biology. 49 (1): 27–47. doi:10.1086/407902. JSTOR   2821658. S2CID   85396846.
  5. 1 2 Turner, A.H.; Makovicky, P.J.; Norell, M.A. (2012). "A review of dromaeosaurid systematics and paravian phylogeny" (PDF). Bulletin of the American Museum of Natural History. 371: 1–206. doi:10.1206/748.1. S2CID   83572446.
  6. 1 2 Godefroit, Pascal; Cau, Andrea; Hu, Dong-Yu; Escuillié, François; Wu, Wenhao; Dyke, Gareth (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. 498 (7454): 359–362. Bibcode:2013Natur.498..359G. doi:10.1038/nature12168. PMID   23719374. S2CID   4364892.
  7. Haeckel, Ernst. (1866) "Generelle Morphologie der Orgnaismen" Berlin: Georg Reimer. 462 pp.
  8. 1 2 Romer, A.S. (1933). Vertebrate Paleontology. University of Chicago Press., 3rd ed., 1966.
  9. 1 2 Romer, A. S. & Parsons, T. S. (1985): The Vertebrate Body. (6th ed.) Saunders, Philadelphia.
  10. "Archaeornithes". Merriam-Webster online dictionary. www.merriam-webster.com. Retrieved 19 January 2018.
  11. Archaeopteryx turns out to be singular bird of a feather. New Scientist 2443:17. 17 April 2004. See commentary on article.
  12. Max Fürbringer (1888). "Untersuchungen zur Morphologie und Systematik der Vögel: zugleich ein Beitrag zur Anatomie der Stütz-und Bewegungsorgane". T. Van Holkema. 15.
  13. 1 2 Holtz, T. Jr.; Brett-Surman, M.K. (1999). "The Taxonomy and Systematics of the Dinosaurs". In Farlow, J.O; Brett-Surman, M.K. (eds.). The Complete Dinosaur (first ed.). Indiana University Press. pp. 92–106.
  14. 1 2 Paul, G.S. (1988). Predatory Dinosaurs of the World. New York: Simon and Schuster.
  15. Senter, Phil; Barsbold, R.; Britt, Brooks B.; Burnham, David B. (2004). "Systematics and evolution of Dromaeosauridae (Dinosauria, Theropoda)". Bulletin of the Gunma Museum of Natural History. 8: 1–20.
  16. 1 2 Mortimer, M. (2012) The Theropod Database: Phylogeny of taxa Archived May 16, 2013, at the Wayback Machine . Retrieved 2013-AUG-15.
  17. Cau, Andrea (2020-02-25). "The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory". PeerJ. 8: e8672. doi: 10.7717/peerj.8672 . ISSN   2167-8359. PMC   7047864 . PMID   32140312.
  18. Li R, Lockley MG, Makovicky PJ, Matsukawa M, Norell MA, Harris JD, Liu, M (2007). "Behavioral and faunal implications of Early Cretaceous deinonychosaur trackways from China". Naturwissenschaften. 95 (3): 185–91. Bibcode:2008NW.....95..185L. doi:10.1007/s00114-007-0310-7. PMID   17952398. S2CID   16380823.
  19. Longrich NR, Currie PJ (2009). "A microraptorine (Dinosauria–Dromaeosauridae) from the Late Cretaceous of North America". PNAS. 106 (13): 5002–7. Bibcode:2009PNAS..106.5002L. doi: 10.1073/pnas.0811664106 . PMC   2664043 . PMID   19289829.
  20. 1 2 3 4 5 6 7 8 Fowler, D.W.; Freedman, E.A.; Scannella, J.B.; Kambic, R.E. (2011). "The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds". PLOS ONE. 6 (12): e28964. Bibcode:2011PLoSO...628964F. doi: 10.1371/journal.pone.0028964 . PMC   3237572 . PMID   22194962.
  21. Zanno, L.E.; Makovicky, P.J. (2011). "Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution". Proc Natl Acad Sci USA. 108 (1): 232–237. Bibcode:2011PNAS..108..232Z. doi: 10.1073/pnas.1011924108 . PMC   3017133 . PMID   21173263.
  22. Manning, P.L.; Payne, D.; Pennicott, J.; Barrett, P.M.; Ennos, R.A. (2006). "Dinosaur killer claws or climbing crampons?". Biology Letters. 22 (1): 110–112. doi:10.1098/rsbl.2005.0395. PMC   1617199 . PMID   17148340.