Krempachy Marl Formation | |
---|---|
Stratigraphic range: Middle Toarcian ~ | |
Type | Geological formation |
Unit of | Pieniny Klippen Belt |
Underlies | Podzamcze Limestone, Skrzypny & Harcygrund Shale |
Overlies | Allgäu Formation & Orava Unit |
Thickness | 10–30 m (33–98 ft) |
Lithology | |
Primary | Marl & limestone |
Other | Lithified limestone |
Location | |
Region | Nowy Targ County-Prešov Region, West Carpathians |
Country | Poland Slovakia |
Type section | |
Named for | Krempachy, a village in southern Poland |
Named by | Birkenmajer |
Year defined | 1977 |
The Krempachy Marl Formation is a geological formation in Poland and Slovakia, dating to about 179 million years ago, and covering the middle Toarcian stage of the Jurassic Period. [1] It is among the most important formations of the Toarcian boundary on the Carpathian realm, being the regional equivalent of the Posidonia Shale. [2]
The formation has been considered as following the model of the Fleckenmergel Marl, without macroscopic paleodepths implicated on the processes. The facies of the formation developed on the Pieniny Klippen Basin, being influenced by the widespread of the Late Liassic Tethys. [2] The formation was a succession of nearshore to epicontinental deposits, with several of the only Toarcian terrestrial deposits know from the Bohemian Massif. It also gives one of the few limited insights into paleoceanographic changes that took place in this area during this key time interval. [3]
The Pieniny Klippen Belt represents an axial tectonic zone on the West Carpathians, with a narrow structure, that extends a several hundred kilometers long structural zone belonging to the Carpathian sector of the Alpide belt, and separates the Southern Carpathian and the Central Carpathian. [2] [4] While the Pliensbachian-Toarcian boundary is nearly unknown on the Belt, the Toarcian to Bajocian succession is present on various points. [2] The belt is a Laramian Front inside the Central Carpathian Orogenic Wedge, that had a re-folded along with a strong compressed process during the Alpine thrusting of the Outer Carpathians in the Neogene. [4] The belt has a series of lithofacies patterns that recover from the Middle Jurassic to the Lower Cretaceous paleogeographical changes on the east Bohemian Massif margin, and reflects a paleobathymetric gradient change, that was developed around the Czorsztyn Swell de to a crustal block of Oravicum, [5] correlated to the contemporaneous Briançonnais. [6] The Toarcian basin was located to the north of Oravicum, being on the NE of the North European Shelf. [4] It was an area that suffered from Middle Jurassic that would have ended forming the Magura Basin. [4] After that, sedimentary infill was translated northward to the nearshore platforms, and then formed nappe structures and flysch mélange. [7] The view and reconstruction of the sedimentary basins on the Toarcian realm is very complicated, since they lost their original geometry due to tectonic works and deformations on the Noegene, abundant allochthonous material and several hiatus on the strata. [4]
The strata of the formation is composed by grey-blue marl & limestones. The formation overlies Sinemurian to Pliensbachian deposits of the Orava Unit, where there is disposed a southwest bedding dipping. The lowermost part of the strata recovers spotted limestone beds & alternations of dark Marls that are equivalent to the uppermost Allgäu Formation. [8] Over the marls there is a series of dark shales that had intercalated siltstones, that mark the start of the main Krempachy Marl Formation. The marls of the main formation strata are covered on Ammonite fragments, intercalated with Dinoflagellates. [9] There is a condensation of the Lower-Middle Toarcian deposits throughout the Western Carpathians. As that, in the Pieniny Klippen Belt, sections like the Tenuicostatum and Serpentinum zones of the early Toarcian are or completely missing or strongly condensed. [10] Altroght sections such as Zázrivá A provide the first record of the T-OAE from all Western Carpathians. [9] Zázrivá A has an expressure of 36 m, oriented to the Southwest. [4]
The Krempachy Marl is rich in black shales in its lowermost parts, which are locally rich in macrofauna, including ammonites, soft-bodied cephalopods, [9] bivalves, crustaceans and fish remains. [4] Manganese mineralization is also common in the oldest part, something shared with most of the coeval Alpine Tethys successions. [11] Due to that, there is a high concentration of Mn contents (6 to 10 wt%). [12] Typical Toarcian sections of the Orava Succession are represented by condensed red marls, marly limestones, and/or red nodular limestones, being locally rich in ammonites. [4]
Geochemical, palynological and mineralogical framboid data show that dysoxic to euxinic conditions occurred in an epicontinental basin located close to the Tethys open-ocean during the T-OAE, and continued after it. [4] Organic-rich sedimentation and anoxic conditions were clearly shorter-lived in the southern basins, where evidence for elevated organic carbon burial is generally restricted to the CIE. [4] There are results that indicate poor oxygenation, elevated carbon and sulfur burial developed in basins located very close to the open-ocean masses of the Tethys Ocean, similar to modern large euxinic basins. [4] The basin was located between Oravicum, with an initial area of ~100,000 square kilometers, and the NW-European shelf and has been associated with considerable amounts of sulfur and carbon during the T-OAE. [4] The presence of brown wood traces has been interpreted as reflecting the proximity of land areas, with fluvial run-off supplying fresh phytoclasts. Although most of the basin lacks unequivocal palynological evidence for brackish conditions, such as the freshwater green algae Botryococcus , being related to effects due to changes in oxygenation. [4]
Color key
| Notes Uncertain or tentative taxa are in small text; |
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Inaperturopollenites [4] | Inaperturopollenites orbiculatus | Zázrivá | Multiple spores | Affinities with the Pinidae. Coniferales wood from medium to large plants, associated with nearshore environments. | |
Genus | Species | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|
Teudopsis [9] | Teudopsis bunelii | Zázrivá | Various specimens | A Teudopseina squid | |
Eleganticeras [9] |
| Zázrivá | Multiple specimens | A hildoceratid ammonite. The most abundant ammonite in the formation, that includes specimens from 30 to 45 cm. | |
Hildaites [9] | Hildaites ex. gr. murleyi-levisoni | Zázrivá | Multiple specimens | A hildoceratid ammonite | |
Harpoceras [9] | Harpoceras ex. gr. falciferum | Zázrivá | Multiple specimens | A harpoceratin ammonite | |
Dumortieria [9] | Dumortieria striatulocostata | Zázrivá | Multiple specimens | A hildoceratid ammonite | |
The Fatra-Tatra Area or the Tatra-Fatra Belt of core mountains is a part of the Inner Western Carpathians, a subprovince of the Western Carpathians. Most of the area lies in Slovakia with small parts reaching into Austria and Poland. The highest summit of the whole Carpathians, the Gerlachovský štít at 2,655 m (8,711 ft), lies in the High Tatras range which belongs to this area.
The Pieniny Klippen Belt is in geology a tectonically and orographically remarkable zone in the Western Carpathians, with a very complex geological structure. It is a narrow and extremely long north banded zone of extreme shortening and sub-vertical strike-slip fault zone, with complex geological history, where only fragments of individual strata and facies are preserved. The Pieniny Klippen Belt is considered one of the main tectonic sutures of the Carpathians and forms the boundary between the Outer and Central Western Carpathians.
The Fernie Formation is a stratigraphic unit of Jurassic age. It is present in the western part of the Western Canada Sedimentary Basin in western Alberta and northeastern British Columbia. It takes its name from the town of Fernie, British Columbia, and was first defined by W.W. Leach in 1914.
The Posidonia Shale geologically known as the Sachrang Formation, is an Early Jurassic geological formation of southwestern and northeast Germany, northern Switzerland, northwestern Austria, southern Luxembourg and the Netherlands, including exceptionally well-preserved complete skeletons of fossil marine fish and reptiles.
The Western Carpathians are an arc-shaped mountain range, the northern branch of the Alpine-Himalayan fold and thrust system called the Alpide belt, which evolved during the Alpine orogeny. In particular, their pre-Cenozoic evolution is very similar to that of the Eastern Alps, and they constitute a transition between the Eastern Alps and the Eastern Carpathians.
The Carpathian Flysch Belt is an arcuate tectonic zone included in the megastructural elevation of the Carpathians on the external periphery of the mountain chain. Geomorphologically it is a portion of the Outer Carpathians. Geologically it is a thin-skinned thrust belt or accretionary wedge, formed by rootless nappes consisting of so-called flysch – alternating marine deposits of claystones, shales and sandstones which were detached from their substratum and moved tens of kilometers to the north (generally). The Flysch Belt is together with Neogene volcanic complexes the only extant tectonic zone along the whole Carpathian arc.
Pygope is an extinct genus of brachiopods belonging to the family Pygopidae. These brachiopods lived in open sea from the Jurassic Period, Kimmeridgian age up to Cretaceous Period, Barremian age. Some of the species are characterised by a smaller or larger perforation through the entire shell in older specimens, while others just have a depression somewhere on the midline. Younger specimens of the perforated species develop a heart-shape and subsequently both extensions merge, thus encircling a central passage which is in fact entirely outside the shell.
The Marne de Flize is a geologic formation in France. It preserves fossils dating back to the Toarcian stage of the Jurassic period.
The Allgäu Formation is a geologic formation in Austria, Germany and Slovakia. It preserves fossils dating back to the Hettangian to Sinemurian stages of the Early Jurassic period, or Raricostatum to Obtusum in the regional stratigraphy. Initially and formally defined by Jacobshagen (1965). The Allgäu Formation is formerly known as spotted marls (Lias-Fleckenmergel) and spotted marly limestones (Fleckenkalk). The formation is represented by dark-grey bioturbated limestones and marlstone interbeds. It represents basinal hemipelagic facies common in Alpine Tethys regions of Alps, Carpathians and other mountain ranges. Several horizons of the formation are particularly rich in ammonite fauna.
The Kandreho Formation is an Early Jurassic geological formation of the Mahajanga Basin of Madagascar. The marly limestones of the formation were deposited in a subtidal lagoonal environment. The formation overlies the Bouleiceras and Spiriferina beds of the early Toarcian and has been correlated to the Marrat Formation of Saudi Arabia. Fossils of the marine crocodylian Andrianavoay as well as bivalves and the ammonite Nejdia have been found in the formation. The name Kandreho Formation was proposed by Geiger in 2004.
The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.
The geology of Slovakia is structurally complex, with a highly varied array of mountain ranges and belts largely formed during the Paleozoic, Mesozoic and Cenozoic eras.
The Calcare di Sogno is a geological formation in Italy, dated to roughly between 182-169 million years ago and covering the Lower Toarcian-Late Bajocian stagess of the Jurassic Period in the Mesozoic Era. Thallatosuchian remains are known from the formation, as well fishes and other taxa.
The Lava Formation is a Mesozoic geologic formation in Lithuania and Kaliningrad, being either the sister or the same unit as the Ciechocinek Formation. It represents the outcrop of Lower Toarcian layers in the Baltic Syncline and in the Lithuanian-Polish Syneclise. It is known by the presence of Miospores and Pollen, as well Plant remains. The formation contains grey, greenish, and dark grey silt and clay with interealatians and lenses of fine-grained sand, pyritic concretions and plant remains. The Jotvingiai Group Toarcian deposits represent deposits laid down in fresh water and brackish basins, possibly lagoons or coastal plain lakes. The Bartoszyce IG 1 of the Ciechocinek Formation shows how at the initial phase of the Toarcian there was a regional transgression in the Baltic Syncline, indicated by greenish-grey mudstones, heteroliths and fine-grained sandstones with abundant plant fossils and plant roots, what indicates a local delta progradation between the Lava and Ciechocinek Fms. Then a great accumulation of miospores indicates a local concentration, likely due to a rapidly decelerating fluvial flow in a delta-fringing lagoon forming a “hydrodynamic trap”, with the wave and currents stopping the miospores to spread to the basin. Latter a marsh system developed with numerous palaeosol levels, being overlayed by brackish-marine embayment deposits that return to lagoon-marsh facies with numerous plant roots and palaeosol levels in the uppermost section, ending the succession. Overall the facies show that the local Ciechocinek-Lava system was a sedimentary basin shallow and isolated, surrounded by a flat coastal/delta plain with marshes, delivering abundant spores and Phytoclasts, indicators of proximal landmasses with high availability of wood and other plant material. This climate at the time of deposition was strongly seasonal, probably with monsoonal periods. Due to the abundant presence of deltaic sediments on the upper part, it is considered to be related to the retry of the sea level. The Lava Formation was deposited on a mostly continental setting, with its upper part, dominated by argillaceous sediments, corresponding to the Ciechocinek Formation. There is a great amount of kaolinite content, being present laterally in the basin, decreasing and lifting space to increasing smectite to the south-west of the formation. On the other hand, there is a great amount of coarsest sediments, which consist mostly of sands.
The Marne di Monte Serrone is a geological formation in Italy, dating to roughly between 181 and 178 million years ago, and covering the early and middle Toarcian stage of the Jurassic Period of central Italy. It is the regional equivalent to the Toarcian units of Spain such as the Turmiel Formation, units in Montenegro, such as the Budoš Limestone and units like the Tafraout Formation of Morocco.
The Budoš Limestone is a geological formation in Montenegro, dating to 180 million years ago, and covering the Toarcian stage of the Jurassic Period. It has been considered an important setting in Balkan paleontology, as it represents a unique terrestrial setting with abundant plant material, one of the few know from the Toarcian of Europe. It is the regional equivalent to the Toarcian units of Spain such as the Turmiel Formation, units like the Azilal Formation of Morocco and others from the Mediterranean such as the Posidonia Beds of Greece and the Marne di Monte Serrone of Italy. In the Adriatic section, this unit is an equivalent of the Calcare di Sogno of north Italy, as well represents almost the same type of ecosystem recovered in the older (Pliensbachian) Rotzo Formation of the Venetian region, know also for its rich floral record.
The Azilal Formation, also known as Toundoute Continental Series and Wazzant Formation, is a geological unit in the Azilal, Béni-Mellal, Ouarzazate, Tinerhir and Errachidia provinces of the High Atlas of Morocco, that cover the Latest Pliensbachian to Middle Aalenian stages of the Jurassic Period. It is a terrestrial deposit which overlies marine dolomites of equivalent age to the Rotzo Formation of Italy, mostly part of the Aganane Formation. Dinosaur remains, such the sauropod Tazoudasaurus and the basal ceratosaur Berberosaurus are known from the unit, along with several undescribed genera. The Units inside the group have been considered individual on the past, being a division of the so-called "Couches rouges", and subdivided by a supposed geological scale. The strata of the group extends towards the Central High Atlas, covering different anticlines, and topographic accidents along the range of the Mountains. Although new studies have suggested that the strata is coeval in age, and should be referred to as a unique unit. The formation is best assigned to an alluvial environment occasionally interrupted by shallow marine incursions and marks a dramatic decrease of the carbonate productivity under increasing terrigenous sedimentation. The Azilal Formation consists mainly of claystones rich in continental plant debris and laminated microbial facies. The toarcian High Atlas is divided in 5 units: the continental layers with paralic deposits belong to the Azilal, along the shoreface layers of the Tagoudite Formation and Tafraout Formation, both connected with the offshore Ait Athmane Formation and the deeper shelf deposits of the Agoudim 1 Formation.
The Saubach Formation is a geological formation in Austria and Germany, dating to about 180–174 million years ago. It was described originally as Saubachschichten in 1975, and classified as part of the Lower Jurassic Adnet Group.
The Úrkút Manganese Ore Formation is a Jurassic geologic formation in Hungary. It covers the Early Toarcian stage of the Early Jurassic, and it is one of the main regional units linked to the Toarcian Anoxic Events. Different fossils heve been recovered on the locations, including marine life such as Ammonites Fish and terrestrial fossils, such as Palynomorphs and fossil wood. Úrkút and Eplény are the main deposits of the Formation. Are related to the Bakony Range, an ancient massif that was uplifted gradually and exposed to a long period of erosion, where the deposits of Úrkút appear to be a basin inclined gently to the north, while the highest point to the south is the basalt mass of Kab Mountain. Eplény region consists of a broad N-S trending open valley between fiat-topped, small hills.
The Dactyliocerassandstein Formation is a Lower Jurassic geologic formation primarily located in Bavaria, Germany. The Formation appears on places like Bruck in der Oberpfalz, the north-east of the Banz Abbey, Wittelshofen, Regensburg and Bodenwöhr. In the astly foreland it extends from the Kulmbach area via Bayreuth, Creussen, Hirschau and Amberg to Schwandorf. Its southernmost known occurrences seems to be Schwandorf himself and Haselbach, although is also found at Bachhausen, far at the south. Is composed mostly by clusters of clay sandstone and sand-lime stone facies occurs only in the south-east of the northern Bavarian Jura region, for example at the edge of the granite Bavarian forest. On its northern edge, it is noticeably less tectonically disturbed in the Bodenwoehr basin near Sollbach. On the western edge it only appears on the Keilberg and Irlbach . It is a deposit recovered It is the same age as the marine Posidonia Shale, and has been identified as part of it in many sources. The formal relationship between the two layers, however, is undefined; the Posidonia Shale is sometimes described as a different coeval unit or a changed sector, possibly with more terrestrial influence. The extent of the major outcrop of the formation is not clearly delimited. It has been observed in Straßkirchen, Bogen, Straubing; its westernmost points are in Pfatter and a deep outcrop in Keilberg. The name of the Formation derives from the presence of Dactylioceras commune and annulatum, as part of the Monotis-Dactylioceras Bed present along the Lower Toarcian deposits on Bavaria. This Dactylioceras bank was recognized as the facies of the peel-poor bank, and was not destroyed in the Bifrons regression, hence the acummulation of Ammonites and the name of the layer. Is even preserved in the coastal area of the sand deposit, when the regression probably increased the transportability of the water so large that the thin, light Pseudomonotis (=Arctotis) shells were moved, but not the heavy ones, which at that time already contained sands filled of Dactylioceras specimens.