L-glutamyl-(BtrI acyl-carrier protein) decarboxylase

Last updated
L-glutamyl-(BtrI acyl-carrier protein) decarboxylase
Identifiers
EC no. 4.1.1.95
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

L-glutamyl-(BtrI acyl-carrier protein) decarboxylase (EC 4.1.1.95, btrK (gene)) is an enzyme with systematic name L-glutamyl-(BtrI acyl-carrier protein) carboxy-lyase. [1] This enzyme catalyses the following chemical reaction

L-glutamyl-[BtrI acyl-carrier protein] 4-amino butanoyl-[BtrI acyl-carrier protein] + CO2

This enzyme binds pyridoxal 5'-phosphate.

Related Research Articles

<span class="mw-page-title-main">Coenzyme A</span> Coenzyme, notable for its synthesis and oxidation role

Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate (vitamin B5), and adenosine triphosphate (ATP).

<span class="mw-page-title-main">Gamma-glutamyltransferase</span> Class of enzymes

Gamma-glutamyltransferase is a transferase that catalyzes the transfer of gamma-glutamyl functional groups from molecules such as glutathione to an acceptor that may be an amino acid, a peptide or water. GGT plays a key role in the gamma-glutamyl cycle, a pathway for the synthesis and degradation of glutathione as well as drug and xenobiotic detoxification. Other lines of evidence indicate that GGT can also exert a pro-oxidant role, with regulatory effects at various levels in cellular signal transduction and cellular pathophysiology. This transferase is found in many tissues, the most notable one being the liver, and has significance in medicine as a diagnostic marker.

Aromatic <small>L</small>-amino acid decarboxylase Class of enzymes

Aromatic L-amino acid decarboxylase, also known as DOPA decarboxylase (DDC), tryptophan decarboxylase, and 5-hydroxytryptophan decarboxylase, is a lyase enzyme, located in region 7p12.2-p12.1.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

In enzymology, an aminoacylase (EC 3.5.1.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-ketoacyl-acyl-carrier-protein synthase I is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Holo-(acyl-carrier-protein) synthase</span>

In enzymology and molecular biology, a holo-[acyl-carrier-protein] synthase is an enzyme that catalyzes the chemical reaction:

4-(gamma-L-glutamylamino)butanoyl-(BtrI acyl-carrier protein) monooxygenase (EC 1.14.14.13, btrO (gene)) is an enzyme with systematic name 4-(gamma-L-glutamylamino)butanoyl-(BtrI acyl-carrier protein),FMN:oxygen oxidoreductase (2-hydroxylating). This enzyme catalyses the following chemical reaction

Malonyl-S-ACP:biotin-protein carboxyltransferase is an enzyme with systematic name malonyl-(acyl-carrier protein):biotinyl-(protein) carboxytransferase. This enzyme catalyses the following chemical reaction

Acetyl-S-ACP:malonate ACP transferase is an enzyme with systematic name acetyl-(acyl-carrier-protein):malonate S-(acyl-carrier-protein)transferase. This enzyme catalyses the following chemical reaction

Ribostamycin:4-(gamma-L-glutamylamino)-(S)-2-hydroxybutanoyl-(BtrI acyl-carrier protein) 4-(gamma-L-glutamylamino)-(S)-2-hydroxybutanoate transferase is an enzyme with systematic name ribostamycin:4-(gamma-L-glutamylamino)-(S)-2-hydroxybutanoyl-(BtrI acyl-carrier protein) 4-(gamma-L-glutamylamino)-(S)-2-hydroxybutanoate transferase. This enzyme catalyses the following chemical reaction

Malonate decarboxylase holo-(acyl-carrier protein) synthase is an enzyme with systematic name 2'-(5-triphosphoribosyl)-3'-dephospho-CoA:apo-malonate-decarboxylase 2'-(5-phosphoribosyl)-3'-dephospho-CoA-transferase . This enzyme catalyses the following chemical reaction

Malonyl-S-ACP decarboxylase (EC 4.1.1.87, malonyl-S-acyl-carrier protein decarboxylase, MdcD/MdcE, MdcD,E) is an enzyme with systematic name malonyl-(acyl-carrier-protein) carboxy-lyase. This enzyme catalyses the following chemical reaction

Biotin-dependent malonate decarboxylase (EC 4.1.1.89, malonate decarboxylase (with biotin), malonate decarboxylase) is an enzyme with systematic name malonate carboxy-lyase (biotin-dependent). This enzyme catalyses the following chemical reaction

γ-L-Glutamyl-butirosin B γ-glutamyl cyclotransferase is an enzyme with systematic name γ-L-glutamyl-butirosin B γ-glutamyl cyclotransferase . This enzyme catalyses the following chemical reaction

Acetate—[acyl-carrier protein] ligase is an enzyme with systematic name acetate:(acyl-carrier-protein) ligase (AMP-forming). This enzyme catalyses the following chemical reaction

(Butirosin acyl-carrier protein)—L-glutamate ligase is an enzyme with systematic name (BtrI acyl-carrier protein):L-glutamate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

The Na+-transporting Carboxylic Acid Decarboxylase (NaT-DC) Family (TC# 3.B.1) is a family of porters that belong to the CPA superfamily. Members of this family have been characterized in both Gram-positive and Gram-negative bacteria. A representative list of proteins belonging to the NaT-DC family can be found in the Transporter Classification Database.

References

  1. Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB (June 2005). "Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway". Chemistry & Biology. 12 (6): 665–75. doi: 10.1016/j.chembiol.2005.04.010 . PMID   15975512.