List of Plasmodium species infecting primates

Last updated

List of Plasmodium species infecting primates
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Order:
Family:
Genus:
Species

Plasmodium billbrayi
Plasmodium billcollinsi
Plasmodium bouillize
Plasmodium brasilianum
Plasmodium bucki
Plasmodium cercopitheci
Plasmodium coatneyi
Plasmodium coulangesi
Plasmodium cynomolgi bastianelli
Plasmodium cynomolgi ceylonensis
Plasmodium cynomolgi cynomolgi
Plasmodium eylesi
Plasmodium falciparum
Plasmodium fieldi
Plasmodium foleyi
Plasmodium fragile
Plasmodium girardi
Plasmodium georgesi
Plasmodium gonderi
Plasmodium gonderi
Plasmodium gora
Plasmodium gorb
Plasmodium inui
Plasmodium jefferyi
Plasmodium joyeuxi
Plasmodium knowlesi
Plasmodium lemuris
Plasmodium malariae
Plasmodium ovale curtisi
Plasmodium ovale wallikeri
Plasmodium percygarnhami
Plasmodium petersi
Plasmodium reichenowi
Plasmodium rodhaini
Plasmodium sandoshami
Plasmodium semnopitheci
Plasmodium schwetzi
Plasmodium silvaticum
Plasmodium simiovale
Plasmodium simium
Plasmodium uilenbergi
Plasmodium vivax
Plasmodium youngei

Contents

Red blood cell infected with malaria P vivax trophozoite4.jpg
Red blood cell infected with malaria

The Plasmodiumspecies infecting primates include the parasites causing malaria in humans.

Species infecting humans

Common infections

Rare cases

While infection of humans by other species is known, they are quite rare, in some instances, only a single case. In a number of the cases, the means of infection is unknown, and may be due to accident, i.e. infection by laboratory equipment or a bite by an animal. With the use of the polymerase chain reaction additional species have been and are still being identified that infect humans.

( Plasmodium brasilianum and Plasmodium rhodiani which have been reported to infect humans, are likely synonymous with P. malariae)

One possible experimental infection has been reported with Plasmodium eylesi . Fever and low grade parasitemia were apparent at 15 days. The volunteer (Dr Bennett) had previously been infected by Plasmodium cynomolgi and the infection was not transferable to a gibbon (P. eylesi 's natural host) so this cannot be regarded as definitive evidence of its ability to infect humans. A second case has been reported that may have been a case of P. eylesi but the author was not certain of the infecting species. [5]

A possible infection with Plasmodium tenue has been reported. [6] This report described a case of malaria in a three-year-old black girl from Georgia, United States, who had never been outside the US. She suffered from both P. falciparum and P. vivax malaria and while forms similar to those described for P. tenue were found in her blood even the author was skeptical about the validity of the diagnosis.

Confusingly Plasmodium tenue was proposed in the same year (1914) for a species found in birds. The human species is now considered to be likely to have been a misdiagnosis and the bird species is described on the Plasmodium tenue page.

Former names

Taxonomy in parasitology until the advent of DNA based methods has always been a problem and revisions in this area are continuing. A number of synonyms have been given for the species infecting humans that are no longer recognised as valid. [7] Since perusal of the older literature may be confusing some currently defunct species names are listed here.

P. camerense

P. causiasium
P. golgi
P. immaculatum
P. laverani var. tertium
P. laverani var. quartum
P. malariae var. immaculatum
P. malariae var. incolor
P. malariae var. irregularis
P. malariae var. parva
P. malariae var. quartanae
P. malariae var. quotidianae
P. perniciosum
P. pleurodyniae
P. praecox
P. quartana
P. quotidianum
P. sedecimanae
P. tenue
P. undecimanae
P. vegesio-tertaniae

P. vivax-minuta

Plasmodium shortii and Plasmodium osmaniae are now considered to be junior synonyms of Plasmodium inui.

Notes

Falciparum

Until recently the only known host of P. falciparum was humans but this species has also been described in gorillas ( Gorilla gorilla ) [8] and bonobos [9] There has been a single report of P. falciparum in a brown howler monkey ( Alouatta guariba ) and in black howler monkeys ( Alouatta caraya ) [10] but until this is confirmed its validity should be considered dubious.

A possible report of P. falciparum in a greater spot-nosed monkeys ( Cercopithecus nictitans ) has not been confirmed in a large survey. [11]

A species that clusters with P. falciparum and P. reichenowi has been identified in Gabon, Africa in chimpanzees ( Pan troglodytes ). [12] This appears to have diverged from these two species about 21 million years ago. It has only been identified from the sequence of its mitochondrion to date and further work is needed to characterise the species. A second report has confirmed the existence of this species in chimpanzees. [8] A third report has confirmed the existence of this species. [13]

Night monkeys ( Aotus nigriceps ) can be infected with P. falciparum. This infection may occur naturally. [14] Their potential role - if any - as a source of human infection is unknown.

Two additional species within the subgenus Laverania have been identified on the basis of DNA sequences alone: Plasmodium billbrayi and Plasmodium billcollinsi . [8] and bonobos [9] P. billbrayi was found in two subspecies of chimpanzee ( Pan troglodytes troglodytes and Pan troglodytes schweinfurthii ). P. billcollinsi was found in only one subspecies of chimpanzee (Pan troglodytes troglodytes). Further work is needed to characterise these species.

Malariae

Humans are currently considered to be the only host for P. malariae. However Rodhain and Dellaert in the 1940s showed with transmission studies that P. malariae was present in chimpanzees. [15] [16] The presence of P. malaria in chimpanzees has been reported in Japan suggesting that this species may be able to act as a host. [17] A second paper has described the presence of P. malaria in wild chimpanzees. [13] Another paper has reported several cases of P. malariae in brown howler monkey ( Alouatta guariba ) and black howler monkeys ( Alouatta caraya ) [10] It has been shown that splectomised three-striped night monkey ( Aotus trivirgatus ) can be infected with P. malariae. [18] Another paper has confirmed the presence of P. malaria in chimpanzees. [19]

The existence of multiple independent reports seem to suggest that the chimpanzee and possibly other species may act as a host to P. malaria at least occasionally.

Vivax

P. vivax will infect chimpanzees. Infection tends to be low grade but may be persistent and remain as source of parasites for humans for some time. P. vivax is also known to infect orangutans [20] and the brown howler monkey ( Alouatta guariba clamitans ) [10] P. vivax has been reported from chimpanzees living in the wild. [13] It has been suggested that vivax infection of the great apes in Africa may act as a reservoir given the prevalence of Duffy antigen negative humans in this area. [21]

Ovale

Like P. vivax, P. ovale has been shown to be transmittable to chimpanzees. P. ovale has an unusual distribution pattern being found in Africa, Myanmar the Philippines and New Guinea. In spite of its admittedly poor transmission to chimpanzees given its discontigous spread, it is suspected that P. ovale may in fact be a zoonosis with an as yet unidentified host. If this is actually the case, the host seems likely to be a primate. A report has been published suggesting that P. ovale may be a natural parasite of chimpanzees [22] but this needs confirmation. P. ovale has since been described from chimpanzees living in the wild. [13] This suggests that human infection with this species may as previously suspected be a zoonosis.

It has been recently shown that P. ovale is actually two genetically distinct species that coexist. These species are Plasmodium ovale curtisi and Plasmodium ovale wallikeri. [23] These two species separated between 1.0 and 3.5 million years ago.

Knowlesi

Plasmodium knowlesi has a natural reservoir in the macaques of Southeast Asia, and was only in 1965 identified as being transmissible to humans.

Other species

The remaining species capable of infecting humans all have other primate hosts.

Plasmodium taxonomy

Interrelatedness - The evolution of these species is still being worked out and the relationships given here should be regarded as tentative. This grouping, while originally made on morphological grounds, now has considerable support at the DNA level.

Notes

Subspecies

Many species of Plasmodium which infect primates have been divided into subspecies. Examples are listed below:

Subspecies infecting primates
*P. cynomolgiP. cynomolgi bastianelli and P. cynomolgi ceylonensis.
  • P. inuiP. inui inui and P. inui shortii
  • P. knowlesiP. knowlesi edesoni and P. knowlesi knowlesi.
  • P. vivaxP. vivax hibernans, P. vivax chesson and P. vivax multinucleatum.

Species infecting other hosts

Most if not all Plasmodium species infect more than one host: the host records shown here should be regarded as incomplete.

It has been proposed that the species P. gora and P. gorb should be renamed P. adleri and P. blacklocki respectively.

Primate groups and Plasmodium species

New World monkeys of the family Cebidae: P. brasilianum and P. simium

Old World monkeys of the family Cercopithecidae: P. coatneyi, P. cynomolgi, P. fieldi, P. fragile, P.gonderi, P. georgesi, P. inui, P. knowlesi, P. petersi, P. shortti and P. simiovale

Gibbons of the family Hylobatidae: P. eylesi, P. hylobati, P. jefferyi and P. youngi

Orangutans (Pongo): P. pitheci and P. silvaticum

Gorillas and chimpanzees: P. billcollini, P. billbrayii, P. falciparum, P. gabonensi, P. gora, P. gorb, P. reichenowi, P. rodhaini and P. schwetzi

Mosquitoes known to transmit human malaria listed by region

This listing may be incomplete as the taxonomy of this genus is under revision.

North American

Central American

South American

North Eurasian

Mediterranean

Afro-Arabian

Afrotropical

Indo-Iranian

Indo-Chinese hills

Malaysian

Chinese

Australasian

Primate mosquito vectors and associated Plasmodium species

Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

Recrudescence is the recurrence of an undesirable condition. In medicine, it is usually defined as the recurrence of symptoms after a period of remission or quiescence, in which sense it can sometimes be synonymous with relapse. In a narrower sense, it can also be such a recurrence with higher severity than before the remission. "Relapse" conventionally has a specific meaning when used in relation to malaria.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<i>Plasmodium ovale</i> Species of single-celled organism

Plasmodium ovale is a species of parasitic protozoon that causes tertian malaria in humans. It is one of several species of Plasmodium parasites that infect humans, including Plasmodium falciparum and Plasmodium vivax which are responsible for most cases of malaria in the world. P. ovale is rare compared to these two parasites, and substantially less dangerous than P. falciparum.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<i>Plasmodium knowlesi</i> Species of single-celled organism

Plasmodium knowlesi is a parasite that causes malaria in humans and other primates. It is found throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Like other Plasmodium species, P. knowlesi has a life cycle that requires infection of both a mosquito and a warm-blooded host. While the natural warm-blooded hosts of P. knowlesi are likely various Old World monkeys, humans can be infected by P. knowlesi if they are fed upon by infected mosquitoes. P. knowlesi is a eukaryote in the phylum Apicomplexa, genus Plasmodium, and subgenus Plasmodium. It is most closely related to the human parasite Plasmodium vivax as well as other Plasmodium species that infect non-human primates.

The Anopheles latens mosquito is an important vector for the transmission of malaria in humans and monkeys in Southeast Asia. It is an important vector for the transmission of human malaria in Sarawak; but because it is attracted to both humans and to macaques it is also responsible for the transmission of simian malarias to humans.

<i>Laverania</i> Subgenus of single-celled organisms

Laverania is a subgenus of the parasite genus Plasmodium. Infection with these species results in malaria. The subgenus was first described in 1958.

<span class="mw-page-title-main">Malaria antigen detection tests</span>

Malaria antigen detection tests are a group of commercially available rapid diagnostic tests of the rapid antigen test type that allow quick diagnosis of malaria by people who are not otherwise skilled in traditional laboratory techniques for diagnosing malaria or in situations where such equipment is not available. There are currently over 20 such tests commercially available. The first malaria antigen suitable as target for such a test was a soluble glycolytic enzyme Glutamate dehydrogenase. None of the rapid tests are currently as sensitive as a thick blood film, nor as cheap. A major drawback in the use of all current dipstick methods is that the result is essentially qualitative. In many endemic areas of tropical Africa, however, the quantitative assessment of parasitaemia is important, as a large percentage of the population will test positive in any qualitative assay.

Plasmodium eylesi is a parasite of the genus Plasmodium subgenus Plasmodium.

<span class="mw-page-title-main">History of malaria</span> History of malaria infections

The history of malaria extends from its prehistoric origin as a zoonotic disease in the primates of Africa through to the 21st century. A widespread and potentially lethal human infectious disease, at its peak malaria infested every continent except Antarctica. Its prevention and treatment have been targeted in science and medicine for hundreds of years. Since the discovery of the Plasmodium parasites which cause it, research attention has focused on their biology as well as that of the mosquitoes which transmit the parasites.

Plasmodium fieldi is a parasite of the genus Plasmodium sub genus Plasmodium found in Malaysia. This species is related to Plasmodium ovale and Plasmodium simiovale. As in all Plasmodium species, P. fieldi has both vertebrate and insect hosts. The vertebrate hosts for this parasite are primates.

Plasmodium inui is a species of parasite, one of the species of simian Plasmodium that cause malaria in Old World monkeys.

Plasmodium schwetzi is a parasite of the genus Plasmodium subgenus Plasmodium.

Plasmodium coatneyi is a parasitic species that is an agent of malaria in nonhuman primates. P. coatneyi occurs in Southeast Asia. The natural host of this species is the rhesus macaque and crab-eating macaque, but there has been no evidence that zoonosis of P. coatneyi can occur through its vector, the female Anopheles mosquito.

<i>Plasmodium cynomolgi</i> Species of single-celled organism

Plasmodium cynomolgi is an apicomplexan parasite that infects mosquitoes and Asian Old World monkeys. In recent years, a number of natural infections of humans have also been documented. This species has been used as a model for human Plasmodium vivax because Plasmodium cynomolgi shares the same life cycle and some important biological features with P. vivax.

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.

Plasmodium gaboni is a parasite of the genus Plasmodium subgenus Laverania.

References

  1. Coatney GR, Chin W, Contacos PG, King HK; Chin; Contacos; King (1966). "Plasmodium inui, a quartan-type malaria parasite of Old World monkeys transmissible to man". J Parasitol. 52 (4): 660–666. doi:10.2307/3276423. JSTOR   3276423. PMID   5969104.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Contacos PG, Coatney GR, Orihel TC, Collins WE, Chin W; Coatney; Orihel; Collins; Chin; Jeter (1970). "Transmission of Plasmodium schwetzi from the chimpanzee to man by mosquito bite". Am J Trop Med Hyg. 19 (2): 190–5. doi:10.4269/ajtmh.1970.19.190. PMID   5443069.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Rodhain J, Dellaert R (1955). "Contribution a l'etude de Plasmodium schwetzi E. Brumpt (2eme note). Transmission de Plasmodium schwetzi a l'homme" [Study of Plasmodium schwetzi E. Brumpt. II. Transmission of Plasmodium schwetzi to man]. Ann. Soc. Belg. Med. Trop. (in French). 35 (1): 757–75. PMID   14388460.
  4. Brasil, Patrícia; Zalis, Mariano Gustavo; De Pina-Costa, Anielle; Siqueira, Andre Machado; Júnior, Cesare Bianco; Silva, Sidnei; Areas, André Luiz Lisboa; Pelajo-Machado, Marcelo; De Alvarenga, Denise Anete Madureira; Da Silva Santelli, Ana Carolina Faria; Albuquerque, Hermano Gomes; Cravo, Pedro; Santos De Abreu, Filipe Vieira; Peterka, Cassio Leonel; Zanini, Graziela Maria; Suárez Mutis, Martha Cecilia; Pissinatti, Alcides; Lourenço-De-Oliveira, Ricardo; De Brito, Cristiana Ferreira Alves; De Fátima Ferreira-Da-Cruz, Maria; Culleton, Richard; Daniel-Ribeiro, Cláudio Tadeu (2017). "Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: A molecular epidemiological investigation". The Lancet Global Health. 5 (10): e1038–e1046. doi: 10.1016/S2214-109X(17)30333-9 . PMID   28867401.
  5. Tsukamoto M (1977). "An imported human malarial case characterized by severe multiple infections of the red blood cells". Ann. Trop. Med. Parasitol. 19 (2): 95–104.
  6. Russel PF (1928). "Plasmodium tenue (Stephens): A review of the literature and a case report". Am. J. Trop. Med. s1-8 (5): 449–79. doi:10.4269/ajtmh.1928.s1-8.449.
  7. Coatney GR, Roudabush RL; Roudabush (1936). "A catalog and host-index of the genus Plasmodium". J. Parasitol. 22 (4): 338–53. doi:10.2307/3271859. JSTOR   3271859.
  8. 1 2 3 Prugnolle F, Durand P, Neel C, Ollomo B, Ayala FJ, Arnathau C, Etienne L, Mpoudi-Ngole E, Nkoghe D, et al. (2010). "African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum". Proc. Natl. Acad. Sci. USA. 107 (4): 1458–1463. Bibcode:2010PNAS..107.1458P. doi: 10.1073/pnas.0914440107 . PMC   2824423 . PMID   20133889.
  9. 1 2 Krief S, Escalante AA, Pacheco MA, Mugisha L, André C, Halbwax M, Fischer A, Krief JM, Kasenene JM, Crandfield M, Cornejo OE, Chavatte JM, Lin C, Letourneur F, Grüner AC, McCutchan TF, Rénia L, Snounou G (2010). "On the Diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos". PLOS Pathog. 6 (2): e1000765. doi: 10.1371/journal.ppat.1000765 . PMC   2820532 . PMID   20169187.
  10. 1 2 3 Duarte AM, Malafronte Rdos S, Cerutti C; Malafronte Rdos; Cerutti Jr; Curado; De Paiva; Maeda; Yamasaki; Summa; Neves Ddo; De Oliveira; Gomes Ade (August 2008). "Natural Plasmodium infections in Brazilian wild monkeys: Reservoirs for human infections?". Acta Trop. 107 (2): 179–85. doi:10.1016/j.actatropica.2008.05.020. PMID   18620330.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Ayouba A, Mouacha F, Learn GH, Mpoudi-Ngole E, Rayner JC, Sharp PM, Hahn BH, Delaporte E, Peeters M (2012). "Ubiquitous Hepatocystis infections, but no evidence of Plasmodium falciparum-like malarial parasites in wild greater spot-nosed monkeys (Cercopithecus nictitans)" (PDF). Int J Parasitol. 42 (8): 709–713. doi:10.1016/j.ijpara.2012.05.004. hdl:20.500.11820/fc884365-2e37-49e2-be1d-823b87492d32. PMC   3751399 . PMID   22691606.
  12. Ollomo B, Durand P, Prugnolle F; Durand; Prugnolle; Douzery; Arnathau; Nkoghe; Leroy; Renaud (May 2009). "A new malaria agent in African hominids". PLOS Pathog. 5 (5): e1000446. doi: 10.1371/journal.ppat.1000446 . PMC   2680981 . PMID   19478877.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 3 4 5 6 7 8 9 Kaiser M, Lowa A, Ulrich M, Ellerbrok H, Goffe AS, Blasse A, Zommers Z, Couacy-Hymann E, Babweteera F, et al. (Dec 2010). "Wild chimpanzees infected with 5 Plasmodium species". Emerg Infect Dis. 16 (12): 1956–1959. doi:10.3201/eid1612.100424. PMC   3294549 . PMID   21122230.
  14. Da Silva, Araújo M; Messias, MR; Figueiró, MR; Gil, LH; Probst, CM; de Medeiros Vidal, N; Katsuragawa, TH; Krieger, MA; et al. (2013). "Natural Plasmodium infection in monkeys in the state of Rondonia (Brazilian Western Amazon)". Malar J. 12 (1): 180. doi: 10.1186/1475-2875-12-180 . PMC   3680335 . PMID   23731624.
  15. Rodhain J (1940). "Les plasmodiums des anthropoids de l'Afrique centrale et leurs relations avec les plasmodiums humains. Récepticité de l'homme au Plasmodium malariae. (Plasmodium rodhaini Brumpt) du chimpanzé". C. R. Soc. Biol. 133: 276–277.
  16. Rodhain J, Dellaert R (1943). "L'infection á Plasmodium malariae du chimpanzé chez l'homme. Etude d'une première souche isolée de l'anthropoide Pan satyrus verus". Ann. Soc. Belge. Med. Trop. 23: 19–46.
  17. Hayakawa T, Arisue N, Udono T; Arisue; Udono; Hirai; Sattabongkot; Toyama; Tsuboi; Horii; Tanabe (2009). "Identification of Plasmodium malariae, a human malaria parasite, in imported chimpanzees". PLOS ONE. 4 (10): e7412. Bibcode:2009PLoSO...4.7412H. doi: 10.1371/journal.pone.0007412 . PMC   2756624 . PMID   19823579.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Collins WE, Contacos PG; Contacos (1969). "Infectivity of Plasmodium malariae in the Aotus trivirgatus monkey to Anopheles freeborni mosquitoes". J Parasitol. 55 (6): 1253–1257. doi:10.2307/3277270. JSTOR   3277270. PMID   4982903.
  19. Pacheco MA, Cranfield M, Cameron K, Escalante AA (2013). "Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens". Malar J. 12 (1): 328. doi: 10.1186/1475-2875-12-328 . PMC   3848613 . PMID   24044371.
  20. Reid MJ, Ursic R, Cooper D; Ursic; Cooper; Nazzari; Griffiths; Galdikas; Garriga; Skinner; Lowenberger (December 2006). "Transmission of human and macaque Plasmodium spp. to ex-captive orangutans in Kalimantan, Indonesia". Emerging Infect. Dis. 12 (12): 1902–8. doi:10.3201/eid1212.060191. PMC   3291341 . PMID   17326942.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Prugnolle F, Rougeron V, Becquart P, Berry A, Makanga B, Rahola N, Arnathau C, Ngoubangoye B, Menard S, Willaume E, Ayala FJ, Fontenille D, Ollomo B, Durand P, Paupy C, Renaud F (2013). "Diversity, host switching and evolution of Plasmodium vivax infecting African great apes". Proc Natl Acad Sci USA. 110 (20): 8123–8128. Bibcode:2013PNAS..110.8123P. doi: 10.1073/pnas.1306004110 . PMC   3657773 . PMID   23637341.
  22. Duval L, Nerrienet E, Rousset D; Nerrienet; Rousset; Sadeuh Mba; Houze; Fourment; Le Bras; Robert; Ariey (2009). "Chimpanzee malaria parasites related to Plasmodium ovale in Africa". PLOS ONE. 4 (5): e5520. Bibcode:2009PLoSO...4.5520D. doi: 10.1371/journal.pone.0005520 . PMC   2677663 . PMID   19436742.{{cite journal}}: CS1 maint: multiple names: authors list (link) Open Access logo PLoS transparent.svg
  23. Sutherland CJ, Tanomsing N, Nolder D, Oguike M, Jennison C, Pukrittayakamee S, Dolecek C, Hien TT, do Rosário VE, Arez AP, Pinto J, Michon P, Escalante AA, Nosten F, Burke M, Lee R, Blaze M, Otto TD, Barnwell JW, Pain A, Williams J, White NJ, Day NP, Snounou G, Lockhart PJ, Chiodini PL, Imwong M, Polley SD; Tanomsing; Nolder; Oguike; Jennison; Pukrittayakamee; Dolecek; Hien; Do Rosário; Arez; Pinto; Michon; Escalante; Nosten; Burke; Lee; Blaze; Otto; Barnwell; Pain; Williams; White; Day; Snounou; Lockhart; Chiodini; Imwong; Polley (2010). "Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally". J Infect Dis. 201 (10): 1544–50. doi: 10.1086/652240 . PMID   20380562.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Collins WE, Sullivan JS, Nace D, Williams T, Williams A, Barnwell JW; Sullivan; Nace; Williams; Williams; Barnwell (February 2008). "Observations on the sporozoite transmission of Plasmodium vivax to monkeys". J. Parasitol. 94 (1): 287–8. doi:10.1645/GE-1283.1. PMID   18372652. S2CID   11863223.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Collins WE, Richardson BB, Morris CL, Sullivan JS, Galland GG; Richardson; Morris; Sullivan; Galland (July 1998). "Salvador II strain of Plasmodium vivax in Aotus monkeys and mosquitoes for transmission-blocking vaccine trials". Am. J. Trop. Med. Hyg. 59 (1): 29–34. doi: 10.4269/ajtmh.1998.59.29 . PMID   9684622.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Collins, W. E.; Sullivan, J. S.; Nace, D.; Williams, T.; Sullivan, J. J.; Galland, G. G.; Grady, K. K.; Bounngaseng, A. (April 2002). "Experimental infection of Anopheles farauti with different species of Plasmodium". J. Parasitol. 88 (2): 295–8. doi:10.1645/0022-3395(2002)088[0295:EIOAFW]2.0.CO;2. JSTOR   3285576. PMID   12054000. S2CID   21190789.
  27. Collins WE, Morris CL, Richardson BB, Sullivan JS, Galland GG; Morris; Richardson; Sullivan; Galland (August 1994). "Further studies on the sporozoite transmission of the Salvador I strain of Plasmodium vivax". J. Parasitol. 80 (4): 512–7. doi:10.2307/3283184. JSTOR   3283184. PMID   8064516.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Wharton RH, Eyles DE.; Eyles (1961). "Anopheles hackeri, a vector of Plasmodium knowlesi in Malaya". Science. 134 (3474): 279–80. Bibcode:1961Sci...134..279W. doi:10.1126/science.134.3474.279. PMID   13784726. S2CID   19939327.
  29. Vythilingam, I.; Tan, C. H.; Asmad, M.; Chan, S. T.; Lee, K. S.; Singh, B. (2006). "Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia". Trans R Soc Trop Med Hyg. 100 (11): 1087–88. doi:10.1016/j.trstmh.2006.02.006. PMID   16725166.
  30. Tan, C. H.; Vythilingam, I.; Matusop, A.; Chan, S. T.; Singh, B. (2008). "Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi". Malar. J. 7: 52. doi: 10.1186/1475-2875-7-52 . PMC   2292735 . PMID   18377652.