Lotus 900 series

Last updated

900 series
Lotus Eclat engine (9907009724) (cropped).jpg
Overview
Manufacturer Lotus Cars
Production19721999
Layout
Configuration
  • Inline-4 (Types 904, 905, 906, 907, 910, 911, 912, 920)
  • V8 (Types 909, 918)
Displacement
  • 2.0 L; 120.4 cu in (1,973 cc)
  • 2.0 L; 121.5 cu in (1,991 cc)
  • 2.0 L; 121.7 cu in (1,994 cc)
  • 2.2 L; 132.7 cu in (2,174 cc)
  • 3.5 L; 213.9 cu in (3,506 cc)
  • 4.0 L; 244.8 cu in (4,011 cc)
Cylinder bore
  • 83 mm (3.27 in)
  • 84.45 mm (3.325 in)
  • 95.25 mm (3+34 in)
Piston stroke
  • 69.24 mm (2.726 in)
  • 69.85 mm (2+34 in)
  • 70.3 mm (2.77 in)
  • 76.2 mm (3 in)
  • 81 mm (3.19 in)
  • 89 mm (3+12 in)
Cylinder block material
  • Iron (Types 904, 905)
  • Aluminium (all others)
Cylinder head materialAluminium
Valvetrain DOHC 4 valves x cylinder
Compression ratio 7.5:1, 8.0:1, 8.4:1, 9.4:1, 9.5:1, 10.9:1
Combustion
Turbocharger Single/Twin Garrett AiResearch T3 (in Lotus Esprit)
Fuel system
Management Lucas, Bosch KE-Jetronic
Fuel typePetrol
Oil system
Cooling system Water-cooled
Output
Power output 140–350 hp (104–261 kW)
Torque output 140–295 lb⋅ft (190–400 N⋅m)
Dimensions
Dry weight 214–414.5 lb (97.1–188.0 kg)
Chronology
Predecessor Lotus-Ford Twin Cam

The Lotus 900 series is a family of internal combustion engines designed and built by Lotus Cars of United Kingdom. Successor to the Lotus-Ford Twin Cam, the 900 was the first complete engine developed by Lotus. The engine was built from 1972 to 1999. [1]

Contents

Background

As early as 1964, Lotus recognised the need to find a replacement for the Lotus Twin Cam engine. [2] Colin Chapman issued a brief that listed the features to be required in a new engine, including 'high efficiency, flexibility, torque and smoothness which was suitable for hand assembly'. [3] Unable to find this combination in any existing engine, the company used outside consultants and internal resources to define the characteristics of the next Lotus engine. [4] After having rejected a 120° V6 due to being too wide for Lotus' chassis and a 60° V6 as too tall for the intended bodywork, the engineers determined that a 2-litre inline-four engine was the optimal choice. This future engine would have four valves per cylinder (16 valves total) operated by belt-driven dual overhead cams and develop 150 hp (112 kW). The block would be angled at 45° from vertical to permit a lower bonnet and simplify development of a 4-litre V8 version for future use in Indianapolis racing.

The design team was headed by Steve Sanville, Lotus' Head of Powertrain Development, and Ron Burr, formerly of Coventry Climax. [2] Even though the team was able to complete the design for the new cylinder head and start work on the engine block and crankshaft, it became apparent that Lotus' racing program and concurrent move to a new larger factory would limit the resources available for the new engine project. [4]

Vauxhall

At the 1967 Earl's Court Motorshow Vauxhall unveiled their new Victor FD model. The car included an all-new Vauxhall Slant-4 engine that shared many characteristics with the engine Lotus was developing. The Vauxhall engine was an inline 4 cylinder engine with a belt-driven overhead camshaft. The block was slanted at 45° from vertical and a V8 was planned but never realised. Most importantly for Lotus, the bore centres of the Vauxhall slant-4 were the same as those Lotus had determined for the 900 series. [2]

After seeing the new engine at the show Chapman arranged a meeting with John Alden, Vauxhall's Engineering Director, where he negotiated the purchase of ten 2.0 L; 120.4 cu in (1,973 cc) slant-4 blocks and four complete engines. [5] Lotus would accelerate development of the 900 engine by using the Vauxhall iron blocks as test-beds for their new cylinder head while design of their own engine block was under way. [2] :38 For their test engines Lotus installed a crankshaft with a slightly longer stroke.

After it became known that Lotus was using Vauxhall's iron block in their engine development program the rumour began to circulate that the Lotus engine was based on the Vauxhall design, even through the 900 series was entirely a Lotus design. [3]

Later Vauxhall used Lotus' cylinder head as a starting point for the design of their own DOHC cylinder head for the slant-4 block. [5] Until that head was available some Vauxhall rally cars used the Lotus cylinder head on the slant-4 block. [6]

In 1974 Scottish Vauxhall dealer SMT, part of Dealer Team Vauxhall DTV aimed to win the Scottish Rally Championship. Lotus Sport supplied heads, created the first hybrid Lotus 907 head on a Vauxhall 2279cc block. This was fitted to a HC Viva Saloon and rebranded a Magnum. Developed and driven by Andrew Cowan who later worked on the Lotus Sunbeam rally development. With valve train issues causing a DNF Bill Blydenstein took over the engine builds and fitted the Lotus 907 head to the DTV Group 2 rally Vauxhall Magnum Coupes.

Vauxhall later went rallying in Group 4 with the Vauxhall Chevette HS. The road-going versions used the Vauxhall DOHC cylinder head but early rally cars used a modified Lotus 907 head on a 2,300 cc block. These early HS models were homologated with the Lotus 907 head in November 1976 before the requisite 400 cars had been built. [7] [8] A rule change in 1978 by FISA made the Lotus-head cars ineligible to compete and Vauxhall switched to their own DOHC head.

Engine development

As design of the new engine began, Lotus saw the need for a new sports car engine for endurance races of between 800 and 1,600 kilometres (500 and 990 mi). This prompted the company to split the 900 project into two versions; one with smaller ports and a 51° included angle between the valves for touring applications and one with larger ports and a 41° included angle for racing. Tony Rudd, Engineering Director for Lotus, identified the following six engine types created or planned during the early stages of development and production: [4]

Early testing of the type 904 engine did not reveal any fundamental deficiencies, although problems with the horizontally-mounted distributor vibrating and the timing belt jumping off the inlet cam were identified. The Vauxhall blocks developed cracks around their main bearing bolt bosses, so a special batch were made with thicker castings. This change was applied to all subsequent slant-4 blocks. [4]

The 905 engine experienced wear on the connecting rod against the crankshaft webs, which was solved by boring rather than honing the bushing on the small end of the con-rod so that it held more oil. Vibration problems with the distributor, mounted vertically on the 905, appeared on this engine as well, and it was found that a larger battery was needed to start the larger engine. Mechanical noise from the engine and noise from the air intake were excessive. The engines were road tested in a Vauxhall Victor and a Vauxhall Viva GT (registration number RAH 713F).[ citation needed ]

Lotus invested £550,000 in a new machining facility for the new engine, and a series of changes were made to the design to adapt it to the numerically-controlled milling machines. [2] One change was to split the case along the crankshaft centre-line and incorporate a separate one-piece bearing cap and engine skirt girdle. This change eliminated the need to machine deep main bearing saddles and restored some stiffness to the block assembly. The camshaft housings were kept separate from the cylinder head assembly, which simplified machining operations.

Development of the touring engine diverged into a version for the United States and another for the home market and the rest of the world. The main differences were in the carburettors used and compression ratios. Engines for the US received Zenith-Stromberg carburettors and an 8.4:1 compression ratio due to emissions requirements and California law penalising engines with ratios above 8.5:1. Engines destined for the UK and Europe had Dell'Orto carburettors and a 9.5:1 compression ratio. Pistons for UK and European engines were flat-topped and fly-cut for valve relief, while Federal engines had an additional indentation milled out of the centre of the piston top.

Twelve sand-cast aluminium engines were made and installed in the test fleet vehicles, which were joined by a Bedford CF van that continued to be used for deliveries while testing the engine. [9] The alloy blocks were mechanically noisier than the iron engines. Another issue was that the alloy blocks used wet liners which were poorly supported in the initial design and this caused a high rate of cylinder head joint failures. This was dealt with by increasing the torque loading on the studs and increasing the thickness of the liners. An electrolytic corrosion issue was dealt with by changing to a stainless steel gasket and using a chemically inhibited coolant. The engine tended to show low oil pressure at idle which, while not dangerous, was expected to worry car owners and was solved by installing an oversized oil pump.

While preparing engines for Jensen other problems came to light. Transmission vibration thought to be caused by insufficient beam stiffness in the engine/transmission assembly was addressed by adding two lugs to the lower edge of the crankcase. Two oil-related problems surfaced. The first was oil being introduced into the air box during sustained high-speed cruising. An external oil-separating breather was added until the housing for the rubber-lip crankshaft seal could be re-shaped into an oil-separator chamber, which became the permanent solution. The other problem, which was seen under similar conditions, was that the oil pressure would drop precipitously. This was caused by oil being held up in the cam boxes and not draining back into the sump. This was due to mismatched drain holes, casting flash, and sticking or incorrect relief valves. The short-term solution was to phosphate the camshafts, and the other causes were dealt with as assembly problems.

Jensen-Healey

The engine was complete by 1970, but Lotus' existing cars could not be adapted to use the new engine, and Project M50 would not become the Elite Type 75 for several more years. [2] At the same time Norwegian-American businessman Kjell Qvale had taken a controlling interest in Jensen Motors and teamed up with Donald Healey of Austin-Healey fame and his son Geoffrey Healey to design a car to be called the Jensen-Healey, using Vauxhall Viva GT components. They were looking for a suitable engine for the car, having decided that the Vauxhall slant-4 would not be powerful enough after being certified for US emissions. [2]

Chapman approached Qvale and offered to supply Jensen with 60 of the new 900 series engines per week. This initial offer was declined but, after a second offer by Chapman, in October 1971 Jensen announced that they would be using up to 15,000 Lotus 907 engines per year in the Jensen-Healey. The engine would be certified to 1973 Federal standards, but use the European Dell'Orto carburettors and be rated at 140 hp (104 kW). [4]

The 900 series engine first appeared in production form as the 907 with the March 1972 debut of the Jensen-Healey. It was the first mass-produced multi-valve engine available to the general public, appearing one year before the 16-valve SOHC Triumph Dolomite Sprint and three years before the 16-valve DOHC Chevrolet Cosworth Vega.

The engine in the Jensen-Healey experienced a series of problems. In addition to a high rate of oil consumption, distorted cylinder liners occurred. [2] An updated Jensen-Healey Mk2 was introduced late in 1973 with a revised engine having a redesigned crankcase, but by this time the car had already acquired a reputation for poor reliability and sales never reached expected levels. [3] Production of the Jensen-Healey ended in 1976, but by this time Lotus was using the type 907 in their own cars.

Chrysler/Talbot

In 1977, Desmond "Des" O'Dell, Director of Motorsport for Chrysler UK, approached Chapman about having Lotus supply a 900 series engine for a special project. [10] O'Dell wanted to develop a rally version of the Chrysler Sunbeam to take up the competition role formerly filled by the Chrysler Avenger. [11] It would be competing against the then-dominant Ford Escorts.

The engine Lotus supplied had the same 95.25 mm (3+34 in) bore as the 907 but at O'Dell's request displacement was increased to 2.2 L; 132.7 cu in (2,174 cc) by lengthening the stroke to 76.2 mm (3 in). Tony Rudd developed a flexible flywheel to dampen increased vibrations from the larger size. This engine was called the type 911. In 1978 Chrysler sold their European operations to the PSA Group, so when car the car debuted in 1979 it was called the Talbot Sunbeam-Lotus. Ultimately 2,298 road-car versions were sold.

In the rally car the 911 engine was tuned to be rated at 250 hp (186 kW; 253 PS). Driver Henri Toivonen won the RAC Rally in 1980, and teammates Guy Frequelin and Russel Brookes were third and fourth. The next year, the car won the Argentine Rally and placed second at Monte Carlo, Portugal, Corsica, Brazil and San Remo, winning the 1981 Championship of Makes for Talbot and earning Frequelin second place in the Drivers series. [2]

Work began on a Group B Talbot Horizon as a possible successor to the Talbot Sunbeam-Lotus. [12] This car had the same type 911 engine but instead of the front-engine, rear-wheel-drive layout of the earlier car the new car adopted a rear mid-engine, rear-wheel-drive layout. Only two prototypes were built before the project was cancelled due to PSA favouring development of the four-wheel drive Peugeot 205 Turbo 16. [13]

900 series engine models

Type 904

The type 904 engine was developed in 1968 by Lotus for use in two Type 62 cars which raced for one year in 1969 and then 1971 to 1973. This hybrid engine used a Vauxhall Slant-4 iron block and the Lotus DOHC aluminium cylinder head with Tecalemit-Jackson fuel injection. The engine was available under two marketing designations; LV220 and LV240, where "LV" stood for Lotus/Vauxhall and 220 and 240 stood for the power developed by the respective versions. [2] :39 [14] :22–25 A total of 25 Lotus 904 engines were made. The heads were sandcast and made by Cosworth. The air intake angle was almost vertical with larger ports than the Lotus 907 head, with maximum valve sizes of 37mm inlet and 35mm exhaust. The final development version LV265 increased power by moving the water cooling to the exhaust side of the head, keeping the inlet temperatures lower and giving 265 bhp. Lotus found the block cracked racing so reinforced the 3 centre main bearings, this modification was used on all the DTV engines.

Bill Blydenstein, the Team Manager for Dealer Team Vauxhall (DTV), acquired several Lotus heads and other parts to build LV240 engines for use in DTV's race cars, including the famous "Old Nail" Firenza among others. When Vauxhall released the 2.3 engine these replaced the 2.0 blocks. [15]

Blydenstein also fitted the LV240 to a race Vauxhall Viva, winning the 1971 & 1972 Irish Saloon Car Championship, driven by Des Donnelly. [16]

The 904 LV/220 and LV/240 also appeared in Daren Cars' Mk3 in the early 1970s. [17]

Applications:

Type 905

The type 905 engine was first run on a test-bed for the production road-car engine and was later installed in the test vehicles prior to the arrival of the first batch of aluminium blocks.

Applications:[ citation needed ]

Type 906

The type 906 engine had a sand-cast version of Lotus' new aluminium block and Tecalemit-Jackson mechanical fuel injection. Cosworth sand cast the heads built to the same spec as the 904 race heads. It was used in a Formula 2 open-wheeled car that had the same "Type 74" designation as the Lotus Europa Twin-Cam and was commonly called the `Texaco Star'. [19] [20] The Formula 3 engines in the two Type 74 Texaco Stars were prepared by Novamotor in Italy and were rated at 275 hp (205 kW).

Applications:

Type 907

Jensen-Healey with Lotus Type 907 twin-cam engine and Dell'Orto carburettors. Jensen Healey engine.jpg
Jensen-Healey with Lotus Type 907 twin-cam engine and Dell'Orto carburettors.

The type 907 was the first version of the 900 series to go into full production when it appeared in the Jensen-Healey in 1972. It began to appear in Lotus cars in 1975 in the Lotus Elite and was later used in the Eclat and Esprit. Bore and stroke was 95.25 mm × 69.24 mm (3+34 in × 2.726 in), for a total displacement of 2.0 L; 120.4 cu in (1,973 cc). The angle between intake and exhaust valves was 38°. Ignition on early engines was provided by a Lucas points and coil system, which was replaced by a Lumenition system on later engines. Breathing through two 2-barrel carburettors, engine power figures for the Jensen-Healey version were 140 hp (104 kW; 142 PS) and 155 hp (116 kW; 157 PS) as used in the early Type 75 Elites. [2] :39–40 The 907 (and the subsequent 912) were offered in several levels of tune, called `specs', that ranged from 1 to 10 with different compression ratios and power outputs. [21]

Even though they produced respectable power for their size and era, early 907s earned the nickname "the torqueless wonder" for their lack of bottom-end torque. [22] [23]

Applications:

Type 909

The type 909 was a 90° V8 with a bore and a stroke of 95.25 mm × 70.3 mm (3.750 in × 2.768 in) and total displacement of 4.0 L; 244.8 cu in (4,011 cc). [24] While this 900 variant was mentioned in Rudd's original paper it only appeared in the Lotus Etna concept car that debuted at the Birmingham Motorshow of 1984. [25] Power and torque were reported to be 335 hp (340 PS; 250 kW) and 295 lb⋅ft (400 N⋅m) respectively. [26] The engine weighed 414.5 lb (188.0 kg). [24]

Applications:

Type 911

The 2.2L type 911 debuted in 1978 with the same 95.25 mm (3+34 in) bore as the 907 but with a stroke length of 76.2 mm (3 in). This enlarged 900 variant was designed by Lotus for Chrysler (later Talbot) and their Lotus Talbot Sunbeam rally and production cars. In road trim the type 911 engine produced 150 hp (112 kW; 152 PS) at 5,750 rpm and 150 lb⋅ft (203 N⋅m) of torque at 4,500 rpm. [2] :42 In rally trim this was increased to 250 bhp (186 kW; 253 PS). [2] :42

Applications:

Type 912

The type 912 was a four-cylinder naturally aspirated engine that Lotus began to use in their cars in 1980. The 912 shared its bore, stroke and 2.2 L; 132.7 cu in (2,174 cc) displacement with the type 911 but had many internal enhancements, including redesigned camshafts, camshaft carriers and cam covers as well as a new sump, cylinder head and main bearing girdle. This engine was initially rated at 160 hp (119 kW; 162 PS) at 6,500 rpm and 160 lb⋅ft (217 N⋅m) of torque at 5,000 rpm. [2] :42

In October 1985 a high compression version of the 912 was introduced. The compression ratio was raised to 10.9:1, and the engine also received revised ports, new camshafts, new Mahle pistons and alloy cylinder liners with a Nikasil coating. [3] Externally there were new cam covers with red paint. This engine developed 180 hp (134 kW) at 6,500 pm and 165 lb⋅ft (224 N⋅m) at 5,000 rpm.

Applications:

Type 910 and 910S

The type 910 was a turbocharged engine introduced in the 1980 Esprit Essex. Esprit development engineer Mike Kimberley and Turbo engine project manager Graham Atkin convinced Chapman to focus on maximising torque at low engine speeds. [27]

The compression ratio for the turbo engine was lowered from the 9.4:1 of the naturally aspirated engines to 7.5:1 by lowering the piston crowns and rings relative to the gudgeon pins. [28] New camshafts that increased both lift and duration were added, as were sodium-filled exhaust valves and larger water passages in the cylinder head. The lower main-bearing girdle was made stronger. The installation included a larger radiator and higher-capacity water pump. A dry-sump system was fitted along with an additional scavenge pump and an oil cooler. The engine reverted to a wet-sump system in 1982.

The type 910 used a single Garrett AiResearch T3 turbocharger with maximum boost pressure set to 0.55 bar (8.0 psi). Lotus kept the dual Dell'Orto 40 DHLA carburettors used on the non-turbo engines but opted to have the turbocharger blow through the carburettors, which necessitated pressure seals on the throttle spindles to prevent leaks in the pressurised air-fuel system. [27] Output of the 910 engine was 210 hp (213 PS; 157 kW) at 6,250 rpm and 200 lb⋅ft (271 N⋅m) of torque at 4,500 rpm. [29] [30]

In 1985 a "High Compression" (HC) version was released with new Mahle pistons. [31] The compression ratio was increased to 8.0:1 and maximum boost pressure had been raised to 0.65 bar (9.4 psi). Carburettors still delivered the air/fuel mix but they were now the larger Dell'Orto DHLA 45M model. These changes increased power output to 215 hp (160 kW) at 6,250 rpm and torque to 220 lb⋅ft (300 N⋅m) at 4,250 rpm. [32] In markets with stringent emissions requirements the 910 became the first 900 series engine to use fuel injection with the addition of a Bosch KE-Jetronic system in 1986. Peak power for the injected engine was the same as the HC carburetted version but came at a higher engine speed and peak torque dropped to 202 lb⋅ft (274 N⋅m). [33] In mid-1989 the Bosch system was replaced by Delco GMP4 electronic fuel injection that included a crank-fired wasted spark ignition that eliminated the need for a distributor. Power for this version rose to 228 hp (170 kW) at 6,000 rpm and torque to 218 lb⋅ft (296 N⋅m) at 4,000 rpm. [2]

In 1990 the engine was upgraded with an air-water-air intercooler that Lotus called a Chargecooler to become the type 910S. Maximum boost was raised again, this time to 12.4 psi (0.85 bar). [34] The 910S debuted in the Esprit SE where it was rated at 264 hp (197 kW) and up to 280 hp (209 kW) for short intervals on overboost. Torque was 271 lb⋅ft (367 N⋅m) at 3,900 rpm.

The engine in the Sport 300, X180R and S4s used a new cylinder head cast by Zeus Aluminium Products and commonly known as the Zeus head. The revised head came with enlarged inlet valves and used a reprogrammed engine control module. The T3 turbocharger had a larger impeller, and maximum boost was up to 1 bar (15 psi). This version of the 910S was rated at 300 hp (224 kW).

The type 910S was used in the limited-production Brazilian Emme Lotus 422T 4-door sedan from 1997 to 1999. [35]

Applications:

Type 920

The type 920 engine had an overall displacement of 2.0 L; 121.7 cu in (1,994 cc). Although not significantly larger than the 907, with a bore and stroke of 84.45 mm × 89 mm (3.325 in × 3.504 in) it was slightly undersquare, in contrast to the oversquare 907. The 920 was originally exclusive to the Italian market, where cars with engines smaller than 2.0 L fall into a lower tax regime. It would later be available in Portugal and Greece as well. The 920 was used from 1996 to 1999 in the Esprit GT3, with the improvements from the SE models. In the Esprit GT3, this engine was rated at 240 hp (179 kW). This was the last iteration of the 4-cylinder 900 series Lotus engine, which had a lifespan of nearly 30 years.

Applications:

Type 918

The type 918 is a 3.5-liter DOHC, 4 valves per cylinder V8 engine with a flat-plane crankshaft. Although it carries a 9xx designation it is described as a clean sheet design. [36] The engine had a bore and stroke of 83 mm × 81 mm (3.3 in × 3.2 in) for a total displacement of 3,506 cc (3.5 L; 213.9 cu in). [37] Dry weight for the engine was 214 kg (472 lb). The engine was detuned from 500 hp (507 PS; 373 kW) to 350 hp (355 PS; 261 kW) in order to prevent gearbox damage.[ citation needed ]

Applications:

Engine comparison table

TypeBoreStrokeDisplacementPowerTorqueFuel systemInduction1
90495.25 mm (3+34 in) [38] 69.85 mm (2+34 in) [38] 2.0 L; 121.5 cu in (1,991 cc)220 hp (164 kW) (LV/220)
240 hp (179 kW) (LV/240)
160 lb⋅ft (217 N⋅m)Tecalemit-Jackson fuel injectionNA
905
90695.25 mm (3+34 in)69.24 mm (2.73 in)2.0 L; 120.4 cu in (1,973 cc)275 hp (205 kW)
907160 hp (119 kW) (Europe)
140 hp (104 kW) (US)
140 lb⋅ft (190 N⋅m)2 Dell'Orto DHLA 45E (European Elite)
2 Stromberg 175 CD-2SE (US Elite)
90995.25 mm (3+34 in) [24] 70.3 mm (2.77 in) [24] 4.0 L; 244.8 cu in (4,011 cc)335 hp (250 kW)295 lb⋅ft (400 N⋅m)
91195.25 mm (3+34 in)76.2 mm (3 in)2.2 L; 132.7 cu in (2,174 cc)150 hp (112 kW)150 lb⋅ft (203 N⋅m)
912160 hp (119 kW)
6,500 rpm [2]
180 hp (134 kW)
at 6,500 rpm (1986 Excel SA) [39]
160 lb⋅ft (217 N⋅m)
at 5,000 rpm [2]
165 lb⋅ft (224 N⋅m)
5,000 rpm (1986 Excel SA) [39]
910210 hp (157 kW)
at 6,250 rpm
228 hp (170 kW)
at 6,000 rpm
200 lb⋅ft (271 N⋅m)
4,500 rpm
218 lb⋅ft (296 N⋅m)
4,000 rpm
Bosch KE-Jetronic fuel injection
Delco GMP4 electronic fuel injection
T
910S95.25 mm (3+34 in)76.2 mm (3 in)2.2 L; 132.7 cu in (2,174 cc)264 hp (197 kW)
300 hp (224 kW)
271 lb⋅ft (367 N⋅m)
at 3,900 rpm
T, I
92084.45 mm (3.325 in)89 mm (3+12 in)2.0 L; 121.7 cu in (1,994 cc)240 hp (179 kW)
at 6,250 rpm (1996 GT3) [40]
215 lb⋅ft (292 N⋅m)
at 3,750 rpm (1996 GT3) [40]
91883 mm (3.27 in)81 mm (3.19 in)3.5 L; 213.9 cu in (3,506 cc)350 hp (261 kW)
at 6,500 rpm (1996 V8) [41]
295 lb⋅ft (400 N⋅m)
at 4,250 rpm (1996 V8) [41]
T
Note:
1"NA" = Naturally aspirated, "T" = Turbocharged, "I" = Intercooled.

Related Research Articles

<span class="mw-page-title-main">Cosworth</span> British automotive engineering company

Cosworth is a British automotive engineering company founded in London in 1958, specialising in high-performance internal combustion engines, powertrain, and electronics for automobile racing (motorsport) and mainstream automotive industries. Cosworth is based in Northampton, England, with facilities in Cottenham, England, Silverstone, England, and Indianapolis, IN, US.

<span class="mw-page-title-main">Lotus Cars</span> British multinational manufacturer of sports cars and electric lifestyle vehicles.

Lotus Group is a British multinational automotive manufacturer of luxury sports cars and electric vehicles.

<span class="mw-page-title-main">Vauxhall Slant-4 engine</span> Reciprocating internal combustion engine

The Vauxhall Slant-4 is an inline four-cylinder petrol car engine manufactured by Vauxhall Motors. Unveiled in 1966, it was one of the first production overhead camshaft designs to use a timing belt to drive the camshaft. The Slant-4 block was used as a development mule for the Lotus 900 series of engines. Vauxhall used the engine in a variety of models until production ended in 1983.

<span class="mw-page-title-main">Rover K-series engine</span> Reciprocating internal combustion engine

The Rover K-series engine is a series of internal combustion engines built by Powertrain Ltd, a sister company of MG Rover. The engine was a straight-four cylinder built in two forms, SOHC and DOHC, ranging from 1.1 to 1.8 L; 67.9 to 109.6 cu in.

<span class="mw-page-title-main">Lotus Esprit</span> British sports car

The Lotus Esprit is a sports car built by Lotus Cars from 1976 to 2004 at their Hethel, England factory. It has a rear mid-engine, rear-wheel-drive layout. Together with the Lotus Elise / Exige, it is one of Lotus' most long-lived models.

<span class="mw-page-title-main">Nissan VG engine</span> Reciprocating internal combustion engine

The VG engine is a family of V6 engines designed and produced by Nissan between 1983 and 2004.

<span class="mw-page-title-main">Vauxhall Carlton</span> Motor vehicle

The Vauxhall Carlton is a series of large family car/executive car sold in two distinct generations by the Vauxhall division of GM Europe between 1978 and 1994. The Carlton was based on the Opel Rekord E (Mk.1) and Omega A (Mk.2).

<span class="mw-page-title-main">General Motors 54° V6 engine</span> Reciprocating internal combustion engine

General Motors' Opel subsidiary in Europe designed a compact V6 engine with an unusual 54° vee angle. It was an iron block/aluminum head DOHC design with four valves per cylinder. All 54° engines were assembled at Ellesmere Port in England.

<span class="mw-page-title-main">Multi-valve</span> Type of car engine

A multi-valve or multivalve engine is one where each cylinder has more than two valves. A multi-valve engine has better breathing, and with more smaller valves may be able to operate at higher revolutions per minute (RPM) than a two-valve engine, delivering more power.

<span class="mw-page-title-main">Saab B engine</span> Reciprocating internal combustion engine

The Saab B engine is an inline four-cylinder car petrol engine developed by Saab Automobile. A redesign of the Triumph slant-four engine, the B engine displaced 2.0 L and first appeared in 1972. The B engine was used in the Saab 99 and 900 models. Saab began to phase the engine out in 1981.

<span class="mw-page-title-main">Saab H engine</span> Automobile engine; redesign of the Saab B

The Saab H engine is a redesign of the Saab B engine, which in turn was based on the Triumph Slant-4 engine.

<span class="mw-page-title-main">Nissan L engine</span> Reciprocating internal combustion engine

The Nissan L series of automobile engines was produced from 1966 through 1986 in both inline-four and inline-six configurations ranging from 1.3 L to 2.8 L. It is a two-valves per cylinder SOHC non-crossflow engine, with an iron block and an aluminium head. It was most notable as the engine of the Datsun 510, Datsun 240Z sports car, and the Nissan Maxima. These engines are known for their reliability, durability, and parts interchangeability.

<span class="mw-page-title-main">Jensen-Healey</span> British two-seater convertible sports car

The Jensen-Healey is a British two-seater convertible sports car, produced by Jensen Motors Ltd. in West Bromwich, England, from 1972 until 1976.

<span class="mw-page-title-main">Nissan MA engine</span> Reciprocating internal combustion engine

The MA is a straight-4 SOHC 0.9 L, 1.0 L, or 1.2 L engine first introduced in 1982 by Nissan, intended primarily for the K10 series Micra/March model. It shares design similarities with the older E engine, with an 8-valve hemispherical cylinder head but differs in that it uses an aluminium cylinder block. Unusually, the specified ignition timing for the MA10 running on the specified 90 RON gasoline was 2 degrees after top dead centre, reflecting a very high flame speed in the compact combustion chambers.

<span class="mw-page-title-main">Mitsubishi 3G8 engine</span> Reciprocating internal combustion engine

The Mitsubishi 3G8 engine is a range of three-cylinder powerplant from Mitsubishi Motors, introduced in the fifth generation of their Mitsubishi Minica kei car. In common with other contemporary engines in the class, it could be specified with many advanced technologies despite its diminutive size, including multi-valve cylinder heads and double overhead camshafts. The top-of-the-line Dangan ZZ variant was also the first kei car to benefit from turbocharging. In 1987 Mitsubishi was the first manufacturer to supercharge a kei vehicle, and in 1989 became the world's first production car to feature five valves per cylinder, ahead of similar developments by Bugatti, Audi, Ferrari and Toyota.

<span class="mw-page-title-main">GM Family II engine</span> Reciprocating internal combustion engine

The Family II is a straight-4 piston engine that was originally developed by Opel in the 1970s, debuting in 1981. Available in a wide range of cubic capacities ranging from 1598 to 2405 cc, it simultaneously replaced the Opel CIH and Vauxhall Slant-4 engines, and was GM Europe's core mid-sized powerplant design for much of the 1980s, and provided the basis for the later Ecotec series of engines in the 1990s.

<span class="mw-page-title-main">Lotus 907</span>

The Lotus 907 is an inline-4 automobile engine designed and manufactured by Lotus Cars. Displacing 1,973 cubic centimetres (120.4 cu in), it is all-alloy, and features dual overhead camshafts (DOHC) and 16 valves. It developed approximately 144 bhp (107 kW) with dual side-draft Dell'Orto carburetors in most markets. US cars had Zenith Stromberg carburetors. It was nicknamed "The Torqueless Wonder" for its lack of bottom end but good high end horsepower.

<span class="mw-page-title-main">Lotus-Ford Twin Cam</span> Reciprocating internal combustion engine

The Lotus-Ford Twin Cam is an inline-four petrol engine developed by Lotus for the 1962 Lotus Elan. A few early examples displaced 1.5 litres, but the majority were 1.55-litre (1557cc) engines. It used a Ford 116E iron cylinder block and a new aluminium cylinder head with dual overhead camshafts. The Twin Cam was used in a variety of vehicles until Lotus stopped production in 1973. It was succeeded by the Lotus 907 engine.

<span class="mw-page-title-main">Sunbeam Manitou</span> British aero-engine produced by Sunbeam

The Sunbeam Manitou was an aero-engine produced by Sunbeam. Unsuccessful as an aero-engine, it is best known for having powered the Sunbeam 350HP racing car.

<span class="mw-page-title-main">Opel cam-in-head engine</span> Reciprocating internal combustion engine

The Opel cam-in-head engine (CIH) is a family of automobile engines built by former General Motors subsidiary Opel from 1965 until 1998, appearing extensively in Opel/Vauxhall badged cars during this period. Both four- and six-cylinder inline configurations were produced. The name derives from the location of the camshaft, which was neither cam-in-block nor a true overhead camshaft. In the CIH engine the camshaft is located in the cylinder head but sits alongside the valves rather than above them, so therefore effectively is still an overhead valve design. The valves are actuated through very short tappets and rocker arms. The engine first appeared in the Opel Rekord B in 1965, and was largely replaced in four-cylinder form by the GM Family II unit as Opel/Vauxhall's core mid-size engine in the 1980s, with the six-cylinder versions continuing until 1994 in the Omega A and Senator B. A large capacity 2.4L four-cylinder version continued until 1998.

References

  1. "Lotus Esprit Production Figures". www.lotusespritworld.com.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Adcock, Ian; Adcock, Aan (April 1995). Lotus Heritage. Osprey Publishing (UK). ISBN   978-1855325081.
  3. 1 2 3 4 Vale, Matthew (6 January 2016). Lotus Elite, Eclat and Excel: An Enthusiast's Guide. The Crowood Press Ltd. ISBN   978-1785000782.
  4. 1 2 3 4 5 Rudd, A. C. (1975). "The Type 907 Lotus 2 Litre Engine". Passenger Car Engines. Vol. 19. Mechanical Engineering Publications Limited. pp. 213–223. ISBN   978-0852983133.
  5. 1 2 "VAUXHALL - THE SLANT FOUR ENGINE STORY". vauxpedianet.uk2sitebuilder.com.
  6. "The Slant Four engine". www.droopsnoot.co.uk.
  7. Burr, Norman; Stewart, Jackie (15 October 2014). First Principles: The Official Biography of Keith Duckworth OBE. Veloce Publishing. p. 205. ISBN   978-1845845285.
  8. Robson, Graham (15 May 2017). Cosworth: The Search for Power - 6th Edition. Veloce Publishing. p. 242. ISBN   978-1845848958.
  9. "Lotus powered 1969 Bedford CF". bedfordcf2van.blogspot.ca.
  10. W. C. (January 1979). "Chrysler Competitive". Motorsport. Retrieved 26 August 2017.
  11. "Sunbeam Lotus". www.asoc.co.uk.
  12. "The Group B Horizon rally cars". www.rootes-chrysler.co.uk.
  13. "Talbot Horizon - Group B Prototype". rallygroupbshrine.org. 20 January 2016.
  14. Walton, Jeremy (6 September 1997). Lotus Esprit: The Complete Story. Crowood. ISBN   978-1861260666.
  15. "Obituary – Bill Blydenstein". www.motorsportmagazine.com.
  16. "1970 Blydenstein Vauxhall/Lotus Viva HC". www.silverstoneauctions.com.
  17. "Complete Archive of Daren Mk.3". www.racingsportscars.com.
  18. "Old Nail – Vauxhall Firenza". www.psychoontyres.co.uk.
  19. "TYPE 74 TS". lotus.www.50megs.com.
  20. "Lotus Models: Part 2". www.lotusespritturbo.com.
  21. "Section TD A - Engine data" (PDF). www.theymightberacing.com.
  22. "Top 10 James Bond Cars on a Budget". www.motortrend.com. 6 November 2012.
  23. "White Knight: 1978 Lotus Esprit S1". www.dailyturismo.com. 18 September 2015.
  24. 1 2 3 4 "The Lotus Position — Facing Forwards". www.motorsportmagazine.com.
  25. "Lotus Etna Concept Car". www.lotusespritturbo.com.
  26. "Classic Concepts: 1984 Lotus Etna by Italdesign". www.classicdriver.com.
  27. 1 2 "Lotus 900 series twin cam engine". www.lotusmarques.com.
  28. "Lotus Esprit Turbo 910 Engine". www.lotusespritturbo.com.
  29. "Lotus Essex Turbo Esprit". www.lotusespritworld.com.
  30. "1980 Lotus Esprit Turbo specifications". carfolio.com. Retrieved 13 June 2018.
  31. "Turbo Power, Performance and Fun - Lotus Turbo Esprit". www.hemmings.com.
  32. "Turbo Esprit". www.lotusespritworld.com.
  33. Automobil Revue 1987, p. 357
  34. "Model Information". www.espritfactfile.com.
  35. "Emme Lotus 422T". www.pistonheads.com.
  36. "Lotus Esprit V8 – First Look". www.motortrend.com. July 1996.
  37. "V8 Engine Spec". www.lotusespritworld.com.
  38. 1 2 "Lotus 62 Specification Sheet". gglotus.org.
  39. 1 2 "1986 Lotus Excel SA". www.carfolio.com.
  40. 1 2 Bingham, Phillip. "Lotus Esprit V8". AutoCar.
  41. 1 2 "Lotus Esprit GT3". AutoCar. December 1996.

Further reading