Methanospirillum

Last updated

Methanospirillum
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Methanospirillum

Ferry, Smith & Wolfe 1974
Type species
Methanospirillum hungatei
corrig. Ferry, Smith & Wolfe 1974
Species

In taxonomy, Methanospirillum is a genus of microbes within the family Methanospirillaceae. [1] All its species are methanogenic archaea. The cells are bar-shaped and form filaments. Most produce energy via the reduction of carbon dioxide with hydrogen, but some species can also use formate as a substrate. They are Gram-negative and move using archaella on the sides of the cells. They are strictly anaerobic, and they are found in wetland soil and anaerobic water treatment systems. [2]

Contents

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [3] and National Center for Biotechnology Information (NCBI). [1]

16S rRNA-based LTP_01_2022 [4] [5] [6] 53 marker proteins based GTDB 07-RS207 [7] [8] [9]

M. lacunae Iino, Mori & Suzuki 2010

M. psychrodurum Zhou, Liu & Dong 2014

M. hungatei corrig. Ferry, Smith & Wolfe 1974

M. stamsii Parshina et al. 2014

M. lacunae

M. hungatei

M. stamsii

See also

Related Research Articles

The Thermoprotei is a class of the Thermoproteota.

<span class="mw-page-title-main">Thermoplasmata</span> Class of archaea

In taxonomy, the Thermoplasmata are a class of the Euryarchaeota.

<span class="mw-page-title-main">Thermoplasmatales</span> Order of archaea

In taxonomy, the Thermoplasmatales are an order of the Thermoplasmata. All are acidophiles, growing optimally at pH below 2. Picrophilus is currently the most acidophilic of all known organisms, being capable of growing at a pH of -0.06. Many of these organisms do not contain a cell wall, although this is not true in the case of Picrophilus. Most members of the Thermotoplasmata are thermophilic.

Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<span class="mw-page-title-main">Acidilobales</span> Order of archaea

Acidilobales are an order of archaea in the class Thermoprotei.

<span class="mw-page-title-main">Desulfurococcales</span> Order of archaea

The Desulfurococcales is an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen. Desulfurococcales cells are either regular or irregular coccus in shape, with forms of either discs or dishes. These cells can be single, in pairs, in short chains, or in aciniform formation.

In taxonomy, the Ferroplasmaceae are a family of the Thermoplasmatales.

In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.

In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

Methanospirillaceae are a family of microbes within Methanomicrobiales.

The Pyrodictiaceae are a family of disc-shaped anaerobic microorganisms belonging to the order Desulfurococcales, in the domain Archaea. Members of this family are distinguished from the other family (Desulfurococcaceae) in the order Desulfurococcales by having an optimal growth temperature above 100 °C, rather than below 100 °C.

Methanogenium is a genus of archaeans in the family Methanomicrobiaceae. The type species is Methanogenium cariaci.

Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<i>Methanohalophilus</i> Genus of archaea

In taxonomy, Methanohalophilus is a genus of the Methanosarcinaceae.

In taxonomy, Methanolobus is a genus of methanogenic archaea within the Methanosarcinaceae. These organisms are strictly anaerobes and live exclusively through the production of methane, but the species within Methanolobus cannot use carbon dioxide with hydrogen, acetate or formate, only methyl compounds. The cells are irregular coccoid in form and approximately 1 μm in diameter. They do not form endospores. They are Gram negative and only some are motile, via a single flagellum. They are found in lake and ocean sediments that lack oxygen.

<i>Methanobacterium</i> Genus of archaea

Methanobacterium is a genus of the Methanobacteriaceae family of Archaea. Despite the name, this genus belongs not to the bacterial domain but the archaeal domain. Methanobacterium are nonmotile and live without oxygen as anaerobic bacterium. They do not create endospores when nutrients are limited. Some members of this genus can use formate to reduce methane; others live exclusively through the reduction of carbon dioxide with hydrogen. They are ubiquitous in some hot, low-oxygen environments, such as anaerobic digestors, their waste water, and hot springs.

In taxonomy, Methanocorpusculum is a genus of microbes within the family Methanocorpusculaceae. The species within Methanocorpusculum were first isolated from biodisgester wastewater and activated sludge from anaerobic digestors. In nature, they live in freshwater environments. Unlike most other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

<i>Carboxydocella</i> Genus of bacteria

Carboxydocella is a Gram-positive and obligate anaerobe bacterial genus from the family of Syntrophomonadaceae.

Bulleidia is a Gram-positive, non-spore-forming, anaerobic and non-motile genus from the family of Erysipelotrichidae, with one known species.

Anaerolineaceae is a family of bacteria from the order of Anaerolineales. Anaerolineaceae bacteria occur in marine sediments. There are a total of twelve genera in this family, most of which only encompass one species. All known members of the family are Gram-negative and non-motile. They also do not form bacterial spores and are either mesophilic or thermophilic obligate anaerobes. It is also known that all species in this family are chemoheterotrophs.

References

  1. 1 2 Sayers; et al. "Methanospirillum". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-06-05.
  2. Aharon Oren (2014-10-10). "The Family Methanospirillaceae". The Prokaryotes. Springer Berlin Heidelberg. pp. 283–290. doi:10.1007/978-3-642-38954-2_316. ISBN   978-3-642-38953-5.
  3. J.P. Euzéby. "Methanospirillum". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-11-17.
  4. "The LTP" . Retrieved 23 February 2022.
  5. "LTP_all tree in newick format" . Retrieved 23 February 2022.
  6. "LTP_01_2022 Release Notes" (PDF). Retrieved 23 February 2022.
  7. "GTDB release 07-RS207". Genome Taxonomy Database . Retrieved 20 June 2022.
  8. "ar53_r207.sp_labels". Genome Taxonomy Database . Retrieved 20 June 2022.
  9. "Taxon History". Genome Taxonomy Database . Retrieved 20 June 2022.

Further reading

Scientific journals

Scientific books