Methodology of econometrics

Last updated

The methodology of econometrics is the study of the range of differing approaches to undertaking econometric analysis. [1]

Contents

The econometric approaches can be broadly classified into nonstructural and structural. The nonstructural models are based primarily on statistics (although not necessarily on formal statistical models), their reliance on economics is limited (usually the economic models are used only to distinguish the inputs (observable "explanatory" or "exogenous" variables, sometimes designated as x) and outputs (observable "endogenous" variables, y). Nonstructural methods have a long history (cf. Ernst Engel, 1857 [2] ). [3] Structural models use mathematical equations developed by economists and thus the statistical analysis can estimate also unobservable variables (for example, elasticity of demand [4] ) and use unknown, but constant, parameters. [3] Structural models allow to perform calculations for the situations that are not covered in the data being analyzed, so called counterfactual analysis (for example, the analysis of a monopolistic market to accommodate a hypothetical case of the second entrant). [4]

Examples

Commonly distinguished differing approaches that have been identified and studied include:

In addition to these more clearly defined approaches, Hoover [9] identifies a range of heterogeneous or textbook approaches that those less, or even un-, concerned with methodology, tend to follow.

Methods

Econometrics may use standard statistical models to study economic questions, but most often they are with observational data, rather than in controlled experiments. [10] In this, the design of observational studies in econometrics is similar to the design of studies in other observational disciplines, such as astronomy, epidemiology, sociology and political science. Analysis of data from an observational study is guided by the study protocol, although exploratory data analysis may by useful for generating new hypotheses. [11] Economics often analyzes systems of equations and inequalities, such as supply and demand hypothesized to be in equilibrium. Consequently, the field of econometrics has developed methods for identification and estimation of simultaneous-equation models. These methods are analogous to methods used in other areas of science, such as the field of system identification in systems analysis and control theory. Such methods may allow researchers to estimate models and investigate their empirical consequences, without directly manipulating the system.

One of the fundamental statistical methods used by econometricians is regression analysis. [12] Regression methods are important in econometrics because economists typically cannot use controlled experiments. Econometricians often seek illuminating natural experiments in the absence of evidence from controlled experiments. Observational data may be subject to omitted-variable bias and a list of other problems that must be addressed using causal analysis of simultaneous-equation models. [13]

Experimental economics

In recent decades, econometricians have increasingly turned to use of experiments to evaluate the often-contradictory conclusions of observational studies. Here, controlled and randomized experiments provide statistical inferences that may yield better empirical performance than do purely observational studies. [14]

Data

Data sets to which econometric analyses are applied can be classified as time-series data, cross-sectional data, panel data, and multidimensional panel data. Time-series data sets contain observations over time; for example, inflation over the course of several years. Cross-sectional data sets contain observations at a single point in time; for example, many individuals' incomes in a given year. Panel data sets contain both time-series and cross-sectional observations. Multi-dimensional panel data sets contain observations across time, cross-sectionally, and across some third dimension. For example, the Survey of Professional Forecasters contains forecasts for many forecasters (cross-sectional observations), at many points in time (time series observations), and at multiple forecast horizons (a third dimension). [15]

Instrumental variables

In many econometric contexts, the commonly used ordinary least squares method may not recover the theoretical relation desired or may produce estimates with poor statistical properties, because the assumptions for valid use of the method are violated. One widely used remedy is the method of instrumental variables (IV). For an economic model described by more than one equation, simultaneous-equation methods may be used to remedy similar problems, including two IV variants, Two-Stage Least Squares (2SLS), and Three-Stage Least Squares (3SLS). [16]

Computational methods

Computational concerns are important for evaluating econometric methods and for use in decision making. [17] Such concerns include mathematical well-posedness: the existence, uniqueness, and stability of any solutions to econometric equations. Another concern is the numerical efficiency and accuracy of software. [18] A third concern is also the usability of econometric software. [19]

Structural econometrics

Structural econometrics extends the ability of researchers to analyze data by using economic models as the lens through which to view the data. The benefit of this approach is that, provided that counter-factual analyses take an agent's re-optimization into account, any policy recommendations will not be subject to the Lucas critique. Structural econometric analyses begin with an economic model that captures the salient features of the agents under investigation. The researcher then searches for parameters of the model that match the outputs of the model to the data.

One example is dynamic discrete choice, where there are two common ways of doing this. The first requires the researcher to completely solve the model and then use maximum likelihood. [20] The second bypasses the full solution of the model and estimates models in two stages, allowing the researcher to consider more complicated models with strategic interactions and multiple equilibria. [21]

Another example of structural econometrics is in the estimation of first-price sealed-bid auctions with independent private values. [22] The key difficulty with bidding data from these auctions is that bids only partially reveal information on the underlying valuations, bids shade the underlying valuations. One would like to estimate these valuations in order to understand the magnitude of profits each bidder makes. More importantly, it is necessary to have the valuation distribution in hand to engage in mechanism design. In a first price sealed bid auction the expected payoff of a bidder is given by:

where v is the bidder valuation, b is the bid. The optimal bid solves a first order condition:

which can be re-arranged to yield the following equation for

Notice that the probability that a bid wins an auction can be estimated from a data set of completed auctions, where all bids are observed. This can be done using simple nonparametric estimators, such as kernel regression. If all bids are observed, it is then possible to use the above relation and the estimated probability function and its derivative to point wise estimate the underlying valuation. This will then allow the investigator to estimate the valuation distribution.

Related Research Articles

Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference". An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships". Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today.

Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.

Herman Ole Andreas Wold was a Norwegian-born econometrician and statistician who had a long career in Sweden. Wold was known for his work in mathematical economics, in time series analysis, and in econometric statistics.

<span class="mw-page-title-main">Economic model</span> Simplified representation of economic reality

An economic model is a theoretical construct representing economic processes by a set of variables and a set of logical and/or quantitative relationships between them. The economic model is a simplified, often mathematical, framework designed to illustrate complex processes. Frequently, economic models posit structural parameters. A model may have various exogenous variables, and those variables may change to create various responses by economic variables. Methodological uses of models include investigation, theorizing, and fitting theories to the world.

Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon. An econometric model can be derived from a deterministic economic model by allowing for uncertainty, or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory.

In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable.

Cointegration is a statistical property of a collection (X1X2, ..., Xk) of time series variables. First, all of the series must be integrated of order d (see Order of integration). Next, if a linear combination of this collection is integrated of order less than d, then the collection is said to be co-integrated. Formally, if (X,Y,Z) are each integrated of order d, and there exist coefficients a,b,c such that aX + bY + cZ is integrated of order less than d, then X, Y, and Z are cointegrated. Cointegration has become an important property in contemporary time series analysis. Time series often have trends—either deterministic or stochastic. In an influential paper , Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic trends.

Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.

<span class="mw-page-title-main">Lars Peter Hansen</span> American economist

Lars Peter Hansen is an American economist. He is the David Rockefeller Distinguished Service Professor in Economics, Statistics, and the Booth School of Business, at the University of Chicago and a 2013 recipient of the Nobel Memorial Prize in Economics.

In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.

Cochrane–Orcutt estimation is a procedure in econometrics, which adjusts a linear model for serial correlation in the error term. Developed in the 1940s, it is named after statisticians Donald Cochrane and Guy Orcutt.

Sir David Forbes Hendry, FBA CStat is a British econometrician, currently a professor of economics and from 2001 to 2007 was head of the economics department at the University of Oxford. He is also a professorial fellow at Nuffield College, Oxford.

<span class="mw-page-title-main">Structural break</span> Econometric term

In econometrics and statistics, a structural break is an unexpected change over time in the parameters of regression models, which can lead to huge forecasting errors and unreliability of the model in general. This issue was popularised by David Hendry, who argued that lack of stability of coefficients frequently caused forecast failure, and therefore we must routinely test for structural stability. Structural stability − i.e., the time-invariance of regression coefficients − is a central issue in all applications of linear regression models.

OxMetrics is an econometric software including the Ox programming language for econometrics and statistics, developed by Jurgen Doornik and David Hendry. OxMetrics originates from PcGive, one of the first econometric software for personal computers, initiated by David Hendry in the 1980s at the London School of Economics.

The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. Conceptually, this is achieved by explicitly modelling the individual sampling probability of each observation together with the conditional expectation of the dependent variable. The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974. Heckman also developed a two-step control function approach to estimate this model, which avoids the computational burden of having to estimate both equations jointly, albeit at the cost of inefficiency. Heckman received the Nobel Memorial Prize in Economic Sciences in 2000 for his work in this field.

An error correction model (ECM) belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run common stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent variable returns to equilibrium after a change in other variables.

John Denis Sargan, FBA was a British econometrician who specialized in the analysis of economic time-series.

In linear panel analysis, it can be desirable to estimate the magnitude of the fixed effects, as they provide measures of the unobserved components. For instance, in wage equation regressions, fixed effects capture unobservables that are constant over time, such as motivation. Chamberlain's approach to unobserved effects models is a way of estimating the linear unobserved effects, under fixed effect assumptions, in the following unobserved effects model

Control functions are statistical methods to correct for endogeneity problems by modelling the endogeneity in the error term. The approach thereby differs in important ways from other models that try to account for the same econometric problem. Instrumental variables, for example, attempt to model the endogenous variable X as an often invertible model with respect to a relevant and exogenous instrument Z. Panel analysis uses special data properties to difference out unobserved heterogeneity that is assumed to be fixed over time.

<span class="mw-page-title-main">Homoscedasticity and heteroscedasticity</span> Statistical property

In statistics, a sequence of random variables is homoscedastic if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and heteroskedasticity are also frequently used. Assuming a variable is homoscedastic when in reality it is heteroscedastic results in unbiased but inefficient point estimates and in biased estimates of standard errors, and may result in overestimating the goodness of fit as measured by the Pearson coefficient.

References

  1. Jennifer Castle and Neil Shephard (Eds) (2009) The Methodology and Practice of Econometrics - A Festschrift in Honour of David F. Hendry ISBN   978-0-19-923719-7.
  2. Engel, Ernst (1857). "Die Productions-und Consumptionsverhältnisse des Königreichs Sächsen". Zeitschrift des Statischen Bureaus des Königlich Söchsischen Ministeriums des Inneren (in German) (8, 9).
  3. 1 2 Reiss & Wolak 2007, p. 4282.
  4. 1 2 Reiss & Wolak 2007, p. 4288.
  5. Christ, Carl F. 1994. “The Cowles Commission Contributions to Econometrics at Chicago: 1939–1955” Journal of Economic Literature. Vol. 32.
  6. Sims, Christopher (1980) Macroeconomics and Reality, Econometrica, January, pp. 1-48.
  7. Kydland, Finn E & Prescott, Edward C, 1991. " The Econometrics of the General Equilibrium Approach to Business Cycles," Scandinavian Journal of Economics, Blackwell Publishing, 93 (2), 161–178.
  8. Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton: Princeton University Press.
  9. Hoover, Kevin D. (2006). Chapter 2, "The Methodology of Econometrics." in T. C. Mills and K. Patterson, ed., Palgrave Handbook of Econometrics, v. 1, Econometric Theory, pp. 61-87.
  10. Wooldridge, Jeffrey (2013). Introductory Econometrics, A modern approach. South-Western, Cengage learning. ISBN   978-1-111-53104-1.
  11. Herman O. Wold (1969). "Econometrics as Pioneering in Nonexperimental Model Building," Econometrica, 37(3), pp. 369-381.
  12. For an overview of a linear implementation of this framework, see linear regression.
  13. Edward E. Leamer (2008). "specification problems in econometrics," The New Palgrave Dictionary of Economics. Abstract.
  14. • H. Wold 1954. "Causality and Econometrics," Econometrica , 22(2), p p. 162-177.
       • Kevin D. Hoover (2008). "causality in economics and econometrics," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract and galley proof.
  15. Davies, A., 2006. A framework for decomposing shocks and measuring volatilities derived from multi-dimensional panel data of survey forecasts. International Journal of Forecasting, 22(2): 373-393.
  16. Peter Kennedy (economist) (2003). A Guide to Econometrics, 5th ed. Description Archived 2012-10-11 at the Wayback Machine , preview, and TOC Archived 2012-10-11 at the Wayback Machine , ch. 9, 10, 13, and 18.
  17. • Keisuke Hirano (2008). "decision theory in econometrics," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract.
      James O. Berger (2008). "statistical decision theory," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract.
  18. B. D. McCullough and H. D. Vinod (1999). "The Numerical Reliability of Econometric Software," Journal of Economic Literature, 37(2), pp. 633-665.
  19. • Vassilis A. Hajivassiliou (2008). "computational methods in econometrics," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract.
      Richard E. Quandt (1983). "Computational Problems and Methods," ch. 12, in Handbook of Econometrics, v. 1, pp. 699-764.
      Ray C. Fair (1996). "Computational Methods for Macroeconometric Models," Handbook of Computational Economics, v. 1, pp. -169.
  20. Rust, John (1987). "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher". Econometrica . 55 (5): 999–1033. doi:10.2307/1911259. JSTOR   1911259.
  21. Hotz, V. Joseph; Miller, Robert A. (1993). "Conditional Choice Probabilities and the Estimation of Dynamic Models". Review of Economic Studies . 60 (3): 497–529. doi:10.2307/2298122. JSTOR   2298122.
  22. Guerre, E.; Perrigne, I.; Vuong, Q. (2000). "Optimal Nonparametric Estimation of First Price Auctions". Econometrica . 68 (3): 525–574. doi:10.1111/1468-0262.00123.

Other sources