The methodology of econometrics is the study of the range of differing approaches to undertaking econometric analysis. [1]
The econometric approaches can be broadly classified into nonstructural and structural. The nonstructural models are based primarily on statistics (although not necessarily on formal statistical models), their reliance on economics is limited (usually the economic models are used only to distinguish the inputs (observable "explanatory" or "exogenous" variables, sometimes designated as x) and outputs (observable "endogenous" variables, y). Nonstructural methods have a long history (cf. Ernst Engel, 1857 [2] ). [3] Structural models use mathematical equations derived from economic models and thus the statistical analysis can estimate also unobservable variables, like elasticity of demand. [3] Structural models allow to perform calculations for the situations that are not covered in the data being analyzed, so called counterfactual analysis (for example, the analysis of a monopolistic market to accommodate a hypothetical case of the second entrant). [4]
Commonly distinguished differing approaches that have been identified and studied include:
In addition to these more clearly defined approaches, Hoover [9] identifies a range of heterogeneous or textbook approaches that those less, or even un-, concerned with methodology, tend to follow.
Econometrics may use standard statistical models to study economic questions, but most often they are with observational data, rather than in controlled experiments. [10] In this, the design of observational studies in econometrics is similar to the design of studies in other observational disciplines, such as astronomy, epidemiology, sociology and political science. Analysis of data from an observational study is guided by the study protocol, although exploratory data analysis may by useful for generating new hypotheses. [11] Economics often analyzes systems of equations and inequalities, such as supply and demand hypothesized to be in equilibrium. Consequently, the field of econometrics has developed methods for identification and estimation of simultaneous-equation models. These methods are analogous to methods used in other areas of science, such as the field of system identification in systems analysis and control theory. Such methods may allow researchers to estimate models and investigate their empirical consequences, without directly manipulating the system.
One of the fundamental statistical methods used by econometricians is regression analysis. [12] Regression methods are important in econometrics because economists typically cannot use controlled experiments. Econometricians often seek illuminating natural experiments in the absence of evidence from controlled experiments. Observational data may be subject to omitted-variable bias and a list of other problems that must be addressed using causal analysis of simultaneous-equation models. [13]
In recent decades, econometricians have increasingly turned to use of experiments to evaluate the often-contradictory conclusions of observational studies. Here, controlled and randomized experiments provide statistical inferences that may yield better empirical performance than do purely observational studies. [14]
Data sets to which econometric analyses are applied can be classified as time-series data, cross-sectional data, panel data, and multidimensional panel data. Time-series data sets contain observations over time; for example, inflation over the course of several years. Cross-sectional data sets contain observations at a single point in time; for example, many individuals' incomes in a given year. Panel data sets contain both time-series and cross-sectional observations. Multi-dimensional panel data sets contain observations across time, cross-sectionally, and across some third dimension. For example, the Survey of Professional Forecasters contains forecasts for many forecasters (cross-sectional observations), at many points in time (time series observations), and at multiple forecast horizons (a third dimension). [15]
In many econometric contexts, the commonly used ordinary least squares method may not recover the theoretical relation desired or may produce estimates with poor statistical properties, because the assumptions for valid use of the method are violated. One widely used remedy is the method of instrumental variables (IV). For an economic model described by more than one equation, simultaneous-equation methods may be used to remedy similar problems, including two IV variants, Two-Stage Least Squares (2SLS), and Three-Stage Least Squares (3SLS). [16]
Computational concerns are important for evaluating econometric methods and for use in decision making. [17] Such concerns include mathematical well-posedness: the existence, uniqueness, and stability of any solutions to econometric equations. Another concern is the numerical efficiency and accuracy of software. [18] A third concern is also the usability of econometric software. [19]
Structural econometrics extends the ability of researchers to analyze data by using economic models as the lens through which to view the data. The benefit of this approach is that, provided that counter-factual analyses take an agent's re-optimization into account, any policy recommendations will not be subject to the Lucas critique. Structural econometric analyses begin with an economic model that captures the salient features of the agents under investigation. The researcher then searches for parameters of the model that match the outputs of the model to the data.
One example is dynamic discrete choice, where there are two common ways of doing this. The first requires the researcher to completely solve the model and then use maximum likelihood. [20] The second bypasses the full solution of the model and estimates models in two stages, allowing the researcher to consider more complicated models with strategic interactions and multiple equilibria. [21]
Another example of structural econometrics is in the estimation of first-price sealed-bid auctions with independent private values. [22] The key difficulty with bidding data from these auctions is that bids only partially reveal information on the underlying valuations, bids shade the underlying valuations. One would like to estimate these valuations in order to understand the magnitude of profits each bidder makes. More importantly, it is necessary to have the valuation distribution in hand to engage in mechanism design. In a first price sealed bid auction the expected payoff of a bidder is given by:
where v is the bidder valuation, b is the bid. The optimal bid solves a first order condition:
which can be re-arranged to yield the following equation for
Notice that the probability that a bid wins an auction can be estimated from a data set of completed auctions, where all bids are observed. This can be done using simple nonparametric estimators, such as kernel regression. If all bids are observed, it is then possible to use the above relation and the estimated probability function and its derivative to point wise estimate the underlying valuation. This will then allow the investigator to estimate the valuation distribution.
Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference." An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships." Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today.
Simultaneous equations models are a type of statistical model in which the dependent variables are functions of other dependent variables, rather than just independent variables. This means some of the explanatory variables are jointly determined with the dependent variable, which in economics usually is the consequence of some underlying equilibrium mechanism. Take the typical supply and demand model: whilst typically one would determine the quantity supplied and demanded to be a function of the price set by the market, it is also possible for the reverse to be true, where producers observe the quantity that consumers demand and then set the price.
Economic data are data describing an actual economy, past or present. These are typically found in time-series form, that is, covering more than one time period or in cross-sectional data in one time period. Data may also be collected from surveys of for example individuals and firms or aggregated to sectors and industries of a single economy or for the international economy. A collection of such data in table form comprises a data set.
Herman Ole Andreas Wold was a Norwegian-born econometrician and statistician who had a long career in Sweden. Wold was known for his work in mathematical economics, in time series analysis, and in econometric statistics.
An economic model is a theoretical construct representing economic processes by a set of variables and a set of logical and/or quantitative relationships between them. The economic model is a simplified, often mathematical, framework designed to illustrate complex processes. Frequently, economic models posit structural parameters. A model may have various exogenous variables, and those variables may change to create various responses by economic variables. Methodological uses of models include investigation, theorizing, and fitting theories to the world.
A macroeconomic model is an analytical tool designed to describe the operation of the problems of economy of a country or a region. These models are usually designed to examine the comparative statics and dynamics of aggregate quantities such as the total amount of goods and services produced, total income earned, the level of employment of productive resources, and the level of prices.
Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon. An econometric model can be derived from a deterministic economic model by allowing for uncertainty, or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory.
Computational economics is an interdisciplinary research discipline that combines methods in computational science and economics to solve complex economic problems. This subject encompasses computational modeling of economic systems. Some of these areas are unique, while others established areas of economics by allowing robust data analytics and solutions of problems that would be arduous to research without computers and associated numerical methods.
Cointegration is a statistical property of a collection (X1, X2, ..., Xk) of time series variables. First, all of the series must be integrated of order d. Next, if a linear combination of this collection is integrated of order less than d, then the collection is said to be co-integrated. Formally, if (X,Y,Z) are each integrated of order d, and there exist coefficients a,b,c such that aX + bY + cZ is integrated of order less than d, then X, Y, and Z are cointegrated. Cointegration has become an important property in contemporary time series analysis. Time series often have trends—either deterministic or stochastic. In an influential paper, Charles Nelson and Charles Plosser (1982) provided statistical evidence that many US macroeconomic time series (like GNP, wages, employment, etc.) have stochastic trends.
Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.
Lars Peter Hansen is an American economist. He is the David Rockefeller Distinguished Service Professor in Economics, Statistics, and the Booth School of Business, at the University of Chicago and a 2013 recipient of the Nobel Memorial Prize in Economics.
In economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.
Economic methodology is the study of methods, especially the scientific method, in relation to economics, including principles underlying economic reasoning. In contemporary English, 'methodology' may reference theoretical or systematic aspects of a method. Philosophy and economics also takes up methodology at the intersection of the two subjects.
Sir David Forbes Hendry, FBA CStat is a British econometrician, currently a professor of economics and from 2001 to 2007 was head of the economics department at the University of Oxford. He is also a professorial fellow at Nuffield College, Oxford.
An error correction model (ECM) belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run common stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent variable returns to equilibrium after a change in other variables.
John Denis Sargan, FBA was a British econometrician who specialized in the analysis of economic time-series.
Causation in economics has a long history with Adam Smith explicitly acknowledging its importance via his (1776) An Inquiry into the Nature and Causes of the Wealth of Nations and David Hume and John Stuart Mill (1848) both offering important contributions with more philosophical discussions. Hoover (2006) suggests that a useful way of classifying approaches to causation in economics might be to distinguish between approaches that emphasize structure and those that emphasize process and to add to this a distinction between approaches that adopt a priori reasoning and those that seek to infer causation from the evidence provided by data. He represented by this little table which useful identifies key works in each of the four categories.
Teunis (Teun) Kloek is a Dutch economist and Emeritus Professor of Econometrics at the Erasmus Universiteit Rotterdam. His research interests centered on econometric methods and their applications, especially nonparametric and robust methods in econometrics.
Control functions are statistical methods to correct for endogeneity problems by modelling the endogeneity in the error term. The approach thereby differs in important ways from other models that try to account for the same econometric problem. Instrumental variables, for example, attempt to model the endogenous variable X as an often invertible model with respect to a relevant and exogenous instrument Z. Panel analysis uses special data properties to difference out unobserved heterogeneity that is assumed to be fixed over time.