Methylamine dehydrogenase (amicyanin)

Last updated
Methylamine dehydrogenase (amicyanin)
Identifiers
EC no. 1.4.9.1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Methylamine dehydrogenase (amicyanin) (EC 1.4.9.1, amine dehydrogenase, primary-amine dehydrogenase) is an enzyme with systematic name methylamine:amicyanin oxidoreductase (deaminating). [1] [2] [3] [4] [5] This enzyme catalyses the following chemical reaction:

methylamine + H2O + amicyanin formaldehyde + ammonia + reduced amicyanin

This enzyme contains tryptophan tryptophylquinone (TTQ) co-factor.

Related Research Articles

The oxoglutarate dehydrogenase complex (OGDC) or α-ketoglutarate dehydrogenase complex is an enzyme complex, most commonly known for its role in the citric acid cycle.

<span class="mw-page-title-main">Homogentisic acid</span> Chemical compound

Homogentisic acid is a phenolic acid usually found in Arbutus unedo (strawberry-tree) honey. It is also present in the bacterial plant pathogen Xanthomonas campestris pv. phaseoli as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. It is oxidatively dimerised to form hipposudoric acid, one of the main constituents of the 'blood sweat' of hippopotamuses.

<span class="mw-page-title-main">Enzyme catalysis</span> Catalysis of chemical reactions by specialized proteins known as enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

<span class="mw-page-title-main">Pyruvate dehydrogenase kinase</span> Class of enzymes

Pyruvate dehydrogenase kinase is a kinase enzyme which acts to inactivate the enzyme pyruvate dehydrogenase by phosphorylating it using ATP.

Amine Dehydrogenase, also known as methylamine dehydrogenase (MADH), is a tryptophan tryptophylquinone-dependent (TTQ-dependent) enzyme that catalyzes the oxidative deamination of a primary amine to an aldehyde and ammonia. The reaction occurs as follows:

<span class="mw-page-title-main">Xanthine dehydrogenase</span> Protein-coding gene in the species Homo sapiens

Xanthine dehydrogenase, also known as XDH, is a protein that, in humans, is encoded by the XDH gene.

<span class="mw-page-title-main">Pyruvate dehydrogenase (lipoamide) alpha 1</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial is an enzyme that in humans is encoded by the PDHA1 gene.The pyruvate dehydrogenase complex is a nuclear-encoded mitochondrial matrix multienzyme complex that provides the primary link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the irreversible conversion of pyruvate into acetyl-CoA. The PDH complex is composed of multiple copies of 3 enzymes: E1 (PDHA1); dihydrolipoyl transacetylase (DLAT) ; and dihydrolipoyl dehydrogenase (DLD). The E1 enzyme is a heterotetramer of 2 alpha and 2 beta subunits. The E1-alpha subunit contains the E1 active site and plays a key role in the function of the PDH complex.

<span class="mw-page-title-main">AKR1C1</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1 member C1 also known as 20α-hydroxysteroid dehydrogenase, 3α-hydroxysteroid dehydrogenase, and dihydrodiol dehydrogenase 1/2 is an enzyme that in humans is encoded by the AKR1C1 gene.

<span class="mw-page-title-main">PDK2</span> Protein-coding gene in the species Homo sapiens

Pyruvate dehydrogenase kinase isoform 2 (PDK2) also known as pyruvate dehydrogenase lipoamide kinase isozyme 2, mitochondrial is an enzyme that in humans is encoded by the PDK2 gene. PDK2 is an isozyme of pyruvate dehydrogenase kinase.

<span class="mw-page-title-main">Inosine-5′-monophosphate dehydrogenase</span> Class of enzymes

Inosine-5′-monophosphate dehydrogenase (IMPDH) is a purine biosynthetic enzyme that catalyzes the nicotinamide adenine dinucleotide (NAD+)-dependent oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the first committed and rate-limiting step towards the de novo biosynthesis of guanine nucleotides from IMP. IMPDH is a regulator of the intracellular guanine nucleotide pool, and is therefore important for DNA and RNA synthesis, signal transduction, energy transfer, glycoprotein synthesis, as well as other process that are involved in cellular proliferation.

Maximilian Nierenstein was a professor of biochemistry at the University of Bristol.

<span class="mw-page-title-main">3-Dehydroshikimic acid</span> Chemical compound

3-Dehydroshikimic acid is a chemical compound related to shikimic acid. 3-DHS is available in large quantity through engineering of the shikimic acid pathway.

UDP-N-acetyl-2-amino-2-deoxyglucuronate dehydrogenase (EC 1.1.1.335, WlbA, WbpB) is an enzyme with systematic name UDP-N-acetyl-2-amino-2-deoxy-alpha-D-glucuronate:NAD+ 3-oxidoreductase. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">Methanol dehydrogenase (cytochrome c)</span>

Methanol dehydrogenase (cytochrome c) (EC 1.1.2.7, methanol dehydrogenase, MDH) is an enzyme with systematic name methanol:cytochrome c oxidoreductase. This enzyme catalyses the following chemical reaction

Alcohol dehydrogenase (azurin) (EC 1.1.9.1, type II quinoprotein alcohol dehydrogenase, quinohaemoprotein ethanol dehydrogenase, QHEDH, ADHIIB) is an enzyme with systematic name alcohol:azurin oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Short-chain acyl-CoA dehydrogenase</span>

Short-chain acyl-CoA dehydrogenase is an enzyme with systematic name short-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Primary-amine oxidase</span>

Primary-amine oxidase, also known as semicarbazide-sensitive amine oxidase (SSAO), is an enzyme (EC 1.4.3.21) with the systematic name primary-amine:oxygen oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction

Aralkylamine dehydrogenase (azurin) (EC 1.4.9.2, aromatic amine dehydrogenase, arylamine dehydrogenase, tyramine dehydrogenase) is an enzyme with the systematic name aralkylamine:azurin oxidoreductase (deaminating). This enzyme catalyses the following chemical reaction:

Lupanine 17-hydroxylase (cytochrome c) (EC 1.17.2.2, lupanine dehydrogenase (cytochrome c)) is an enzyme with systematic name lupanine:cytochrome c-oxidoreductase (17-hydroxylating). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Caffeine dehydrogenase</span> Enzyme

Caffeine dehydrogenase, commonly referred to in scientific literature as caffeine oxidase, is an enzyme with the systematic name caffeine:ubiquinone oxidoreductase. The enzyme is most well known for its ability to directly oxidize caffeine, a type of methylxanthine, to trimethyluric acid. Caffeine dehydrogenase can be found in bacterium Pseudomonas sp. CBB1 and in several species within the genera Alcaligenes, Rhodococcus, and Klebsiella.

References

  1. de Beer R, Duine JA, Frank J, Large PJ (April 1980). "The prosthetic group of methylamine dehydrogenase from Pseudomonas AM1: evidence for a quinone structure". Biochimica et Biophysica Acta. 622 (2): 370–4. doi:10.1016/0005-2795(80)90050-1. PMID   6246962.
  2. Eady RR, Large PJ (January 1968). "Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine". The Biochemical Journal. 106 (1): 245–55. doi:10.1042/bj1060245. PMC   1198491 . PMID   4388687.
  3. Eady RR, Large PJ (August 1971). "Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM1". The Biochemical Journal. 123 (5): 757–71. doi:10.1042/bj1230757. PMC   1177077 . PMID   5124384.
  4. Cavalieri C, Biermann N, Vlasie MD, Einsle O, Merli A, Ferrari D, Rossi GL, Ubbink M (June 2008). "Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus". Biochemistry. 47 (25): 6560–70. doi:10.1021/bi7023749. PMID   18512962.
  5. Meschi F, Wiertz F, Klauss L, Cavalieri C, Blok A, Ludwig B, Heering HA, Merli A, Rossi GL, Ubbink M (October 2010). "Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex". Journal of the American Chemical Society. 132 (41): 14537–45. doi:10.1021/ja105498m. hdl: 11381/2328147 . PMID   20873742.