This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Muscular evolution in humans is an overview of the muscular adaptations made by humans from their early ancestors to the modern man. Humans are believed to be predisposed to develop muscle density as early humans depended on muscle structures to hunt and survive. Modern man's need for muscle is not as dire, but muscle development is still just as rapid if not faster due to new muscle building techniques and knowledge of the human body. [1]
DNA and anthropologic data consider modern humans ( Homo sapiens ) a primate and the descendants of ape-like species. Species of the genus ‘Homo’ are all extinct except humans, which are thought to have evolved from australopithecine ancestors originating in East Africa. [2] The development of the modern human has taken place over some 300,000 years and unique adaptations have resulted from ecological pressures that Homo Sapiens has faced. Due prominently to ecological and behavioral factors, the modern human muscular system differs greatly from that of our early primate ancestors. [3] These adaptations and changes have allowed Homo sapiens to function as they do today.
As is the standard for all evolutionary adaptations, the human muscle system evolved in its efforts to increase survivability. Since muscles and the accompanying ligaments and tendons are present all throughout the body aiding in many functions, it is apparent that our behavior and decisions are based upon what we are and how we can operate. It is believed that our ancestor's original habitat was not on the ground but in the trees and we developed new habits that eventually allowed us to thrive on the ground, such as changes in diet, gathering of food, energy expenditure, social interactions, and predators. Life in the canopy meant a food supply similar to that of herbivores: leaves, fruits, berries; mostly low-protein foods that did not require a large amount of energy to find. However, if any could be found, meat was also consumed. At this time our ancestors had not yet switched to full-time bipedalism and so searching for food on the ground did not make sense because there was too much energy and risk involved. This habitat also lacked the predators found on the ground that our chimp-like ancestors would have been poor defenders against. As they became bipedal, they began to live in groups that used weapons to fend off predators and hunt down prey. Running became a key aspect to the survival of the species. [4] Even with all this, it is the development of the brain that has guided the development of the muscle functions and structures in humans.
It is suspected that H. sapiens ancestors’ did not initially forage on the forest floor; instead they migrated from the trees for various reasons. In that environment, they survived on a diet high in plant matter with some insects and little amounts of meat. They were not very formidable opponents to more dominant mammals such as large ancient cats (lions, leopards) but their ability to be better hunters and gatherers along with their corresponding brain development, gave them the advantage to add high-calorie nutrient supplies such as meat to their diet. Analysis of the jaws and skull of the supposed human ancestors show that they had larger, stronger jaw muscles attached to the skull which would be expected with a diet rich in fruit and plants. The back set of molars were much larger for this reason also. The dependence on these higher-calorie foods came from the inefficiency of bipedalism and the growing energy costs of climbing tall trees. [5] Human ancestors are thought to have had more muscles connecting the skull, neck, and shoulders/back area (similar to apes) which caused their neck and skull regions to appear to sag, such as non-human primate species do. These diminished muscles allow the human head to be held in its current ‘upright’ position and lets the occipitofrontalis muscle, or the forehead, to function as an aid to expressions. [6]
Humans became taller as the years passed after becoming bipedal which lengthened back muscles at the base of the tail bone and hips which in effect made them weigh more, further hampering their abilities in the trees. Early human ancestors had a tail where modern humans’ tail bone is located. This aided in balance when in the trees but lost its prominence when bipedalism was adapted. The arms also became shorter (opposite in comparison to legs) for carrying objects and using them as multi-tasking agents instead of climbing and swinging in trees. It is well known that the Homo sapiens line of primates developed the opposable thumb which opened the door to many muscle functions not yet possible in the hand and other upper body regions. [7] The stretching muscles of the forearms whose tendons allowed the human to concentrate its force and abilities within his/her hands and fingers contributed to great new abilities. [8] Overall, upper body muscles developed to deal with more activities that involved the concentration of strength in those muscles such as: holding, throwing, lifting, running with something to assist in escaping danger, hunting, and the construction of habitats and shelters.
The conversion to full-time bipedalism in our distant ancestors is the main argument for the adaptations our muscle structure and function have made. By having to center the force of gravity on two feet, the human thigh bone developed an inward slope down to the knee which may have allowed their gluteal abductors to adapt to the stress and build the necessary muscle. This allows the human to manage their balance on a single foot and when “in-stride” during walking. Muscles near the ankle helped provide the push during walking and running. There are many advantages and disadvantages to this altered posture and gait. The ability to grab something with four appendages was lost but what was gained was the ability to hold a club or throw a spear and use the other free hand for another task. [9] This adaptation also helped humans stand up straight with locked knees for longer periods of time. [10] The plantaris muscle in the foot which helped our ancestors grab and manipulate objects like chimps do, has adapted to its new evolutionary role appropriately, becoming so underdeveloped that it cannot grip or grab anything, the foot has grown more elongated as a result and now 9% of humans are born without it. Homo sapiens benefitted by becoming a better defender and hunter. An increase in running as a hunting and survival activity was perhaps fundamental to this development. [11]
Compared to our closest living relatives, chimpanzees and bonobos, Homo sapiens' skeletal muscle is on average about 1.35 to 1.5 times weaker when normalized for size. As little biomechanical difference was found between individual muscle fibers from the different species, this strength difference is likely the result of different muscle fiber type composition. Humans' limb muscles tend to be more biased toward fatigue-resistant, slow twitch Type I muscle fibers. [12] While there is no proof that modern humans have become physically weaker than past generations of humans, inferences from such things as bone robusticity and long bone cortical thickness can be made as a representation of physical strength. Taking such factors into account, there has been a rapid decrease in overall robusticity in those populations that take to sedentism. [13] For instance, bone shaft thickness since the 17th and 18th centuries have decreased in the United States, indicating a less physically stressful life. [14] This is not, however, the case for current hunter gatherer and foraging populations, such as the Andaman Islanders, who retain overall robusticity. [15] In general, though, hunter gatherers tend to be robust in the legs and farmers tend to be robust in the arms, representing different physical load (i.e., walking many miles a day versus grinding wheat).
Ardipithecus is a genus of an extinct hominine that lived during the Late Miocene and Early Pliocene epochs in the Afar Depression, Ethiopia. Originally described as one of the earliest ancestors of humans after they diverged from the chimpanzees, the relation of this genus to human ancestors and whether it is a hominin is now a matter of debate. Two fossil species are described in the literature: A. ramidus, which lived about 4.4 million years ago during the early Pliocene, and A. kadabba, dated to approximately 5.6 million years ago. Initial behavioral analysis indicated that Ardipithecus could be very similar to chimpanzees, however more recent analysis based on canine size and lack of canine sexual dimorphism indicates that Ardipithecus was characterised by reduced aggression, and that they more closely resemble bonobos.
Bipedalism is a form of terrestrial locomotion where an animal moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.
Human evolution is the evolutionary process within the history of primates that led to the emergence of Homo sapiens as a distinct species of the hominid family that includes all the great apes. This process involved the gradual development of traits such as human bipedalism, dexterity, and complex language, as well as interbreeding with other hominins, indicating that human evolution was not linear but weblike. The study of the origins of humans involves several scientific disciplines, including physical and evolutionary anthropology, paleontology, and genetics; the field is also known by the terms anthropogeny, anthropogenesis, and anthropogony.
Homininae, is a subfamily of the family Hominidae (hominids). This subfamily includes two tribes, Hominini and Gorillini, both having extant species as well as extinct species.
Australopithecus (, OS-trə-lə-PITH-i-kəs, -loh-; or is a genus of early hominins that existed in Africa during the Pliocene and Early Pleistocene. The genera Homo, Paranthropus, and Kenyanthropus evolved from some Australopithecus species. Australopithecus is a member of the subtribe Australopithecina, which sometimes also includes Ardipithecus, though the term "australopithecine" is sometimes used to refer only to members of Australopithecus. Species include A. garhi, A. africanus, A. sediba, A. afarensis, A. anamensis, A. bahrelghazali and A. deyiremeda. Debate exists as to whether some Australopithecus species should be reclassified into new genera, or if Paranthropus and Kenyanthropus are synonymous with Australopithecus, in part because of the taxonomic inconsistency.
Sahelanthropus is an extinct genus of hominid dated to about 7 million years ago during the Late Miocene. The type species, Sahelanthropus tchadensis, was first announced in 2002, based mainly on a partial cranium, nicknamed Toumaï, discovered in northern Chad.
Early modern human (EMH), or anatomically modern human (AMH), are terms used to distinguish Homo sapiens that are anatomically consistent with the range of phenotypes seen in contemporary humans, from extinct archaic human species. This distinction is useful especially for times and regions where anatomically modern and archaic humans co-existed, for example, in Paleolithic Europe. Among the oldest known remains of Homo sapiens are those found at the Omo-Kibish I archaeological site in south-western Ethiopia, dating to about 233,000 to 196,000 years ago, the Florisbad site in South Africa, dating to about 259,000 years ago, and the Jebel Irhoud site in Morocco, dated about 315,000 years ago.
Homo ergaster is an extinct species or subspecies of archaic humans who lived in Africa in the Early Pleistocene. Whether H. ergaster constitutes a species of its own or should be subsumed into H. erectus is an ongoing and unresolved dispute within palaeoanthropology. Proponents of synonymisation typically designate H. ergaster as "African Homo erectus" or "Homo erectus ergaster". The name Homo ergaster roughly translates to "working man", a reference to the more advanced tools used by the species in comparison to those of their ancestors. The fossil range of H. ergaster mainly covers the period of 1.7 to 1.4 million years ago, though a broader time range is possible. Though fossils are known from across East and Southern Africa, most H. ergaster fossils have been found along the shores of Lake Turkana in Kenya. There are later African fossils, some younger than 1 million years ago, that indicate long-term anatomical continuity, though it is unclear if they can be formally regarded as H. ergaster specimens. As a chronospecies, H. ergaster may have persisted to as late as 600,000 years ago, when new lineages of Homo arose in Africa.
Australopithecus afarensis is an extinct species of australopithecine which lived from about 3.9–2.9 million years ago (mya) in the Pliocene of East Africa. The first fossils were discovered in the 1930s, but major fossil finds would not take place until the 1970s. From 1972 to 1977, the International Afar Research Expedition—led by anthropologists Maurice Taieb, Donald Johanson and Yves Coppens—unearthed several hundreds of hominin specimens in Hadar, Ethiopia, the most significant being the exceedingly well-preserved skeleton AL 288-1 ("Lucy") and the site AL 333. Beginning in 1974, Mary Leakey led an expedition into Laetoli, Tanzania, and notably recovered fossil trackways. In 1978, the species was first described, but this was followed by arguments for splitting the wealth of specimens into different species given the wide range of variation which had been attributed to sexual dimorphism. A. afarensis probably descended from A. anamensis and is hypothesised to have given rise to Homo, though the latter is debated.
Knuckle-walking is a form of quadrupedal walking in which the forelimbs hold the fingers in a partially flexed posture that allows body weight to press down on the ground through the knuckles. Gorillas and chimpanzees use this style of locomotion, as do anteaters and platypuses.
The timeline of human evolution outlines the major events in the evolutionary lineage of the modern human species, Homo sapiens, throughout the history of life, beginning some 4 billion years ago down to recent evolution within H. sapiens during and since the Last Glacial Period.
The Hominini (hominins) form a taxonomic tribe of the subfamily Homininae (hominines). They comprise two extant genera: Homo (humans) and Pan, but in standard usage exclude the genus Gorilla (gorillas), which is grouped separately within subfamily Homininae.
A facultative biped is an animal that is capable of walking or running on two legs (bipedal), as a response to exceptional circumstances (facultative), while normally walking or running on four limbs or more. In contrast, obligate bipedalism is where walking or running on two legs is the primary method of locomotion. Facultative bipedalism has been observed in several families of lizards and multiple species of primates, including sifakas, capuchin monkeys, baboons, gibbons, gorillas, bonobos and chimpanzees. Several dinosaur and other prehistoric archosaur species are facultative bipeds, most notably ornithopods and marginocephalians, with some recorded examples within sauropodomorpha. Different facultatively bipedal species employ different types of bipedalism corresponding to the varying reasons they have for engaging in facultative bipedalism. In primates, bipedalism is often associated with food gathering and transport. In lizards, it has been debated whether bipedal locomotion is an advantage for speed and energy conservation or whether it is governed solely by the mechanics of the acceleration and lizard's center of mass. Facultative bipedalism is often divided into high-speed (lizards) and low-speed (gibbons), but some species cannot be easily categorized into one of these two. Facultative bipedalism has also been observed in cockroaches and some desert rodents.
Post-canine megadontia is a relative enlargement of the molars and premolars compared to the size of the incisors and canines. This phenomenon is seen in some early hominid ancestors such as Paranthropus aethiopicus.
Ardipithecus ramidus is a species of australopithecine from the Afar region of Early Pliocene Ethiopia 4.4 million years ago (mya). A. ramidus, unlike modern hominids, has adaptations for both walking on two legs (bipedality) and life in the trees (arboreality). However, it would not have been as efficient at bipedality as humans, nor at arboreality as non-human great apes. Its discovery, along with Miocene apes, has reworked academic understanding of the chimpanzee–human last common ancestor from appearing much like modern-day chimpanzees, orangutans and gorillas to being a creature without a modern anatomical cognate.
The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.
A hand is a prehensile, multi-fingered appendage located at the end of the forearm or forelimb of primates such as humans, chimpanzees, monkeys, and lemurs. A few other vertebrates such as the koala are often described as having "hands" instead of paws on their front limbs. The raccoon is usually described as having "hands" though opposable thumbs are lacking.
The Hominidae, whose members are known as the great apes or hominids, are a taxonomic family of primates that includes eight extant species in four genera: Pongo ; Gorilla ; Pan ; and Homo, of which only modern humans remain.
The chimpanzee–human last common ancestor (CHLCA) is the last common ancestor shared by the extant Homo (human) and Pan genera of Hominini. Estimates of the divergence date vary widely from thirteen to five million years ago.
The diet of known human ancestors varies dramatically over time. Strictly speaking, according to evolutionary anthropologists and archaeologists, there is not a single hominin Paleolithic diet. The Paleolithic covers roughly 2.8 million years, concurrent with the Pleistocene, and includes multiple human ancestors with their own evolutionary and technological adaptations living in a wide variety of environments. This fact with the difficulty of finding conclusive evidence often makes broad generalizations of the earlier human diets very difficult. Humans' pre-hominin primate ancestors were broadly herbivorous, relying on either foliage or fruits and nuts and the shift in dietary breadth during the Paleolithic is often considered a critical point in hominin evolution. A generalization between Paleolithic diets of the various human ancestors that many anthropologists do make is that they are all to one degree or another omnivorous and are inextricably linked with tool use and new technologies.