Solo Man

Last updated

Solo Man
Temporal range: Late Pleistocene 0.117–0.108  Ma
O
S
D
C
P
T
J
K
Pg
N
Ngandong 14. Homo erectus.jpg
Cast of Skull XI at the Hall of Human Origins, Washington, D.C.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Infraorder: Simiiformes
Family: Hominidae
Subfamily: Homininae
Tribe: Hominini
Genus: Homo
Species:
Subspecies:
H. e. soloensis
Trinomial name
Homo erectus soloensis
Oppenoorth, 1932
Synonyms [ citation needed ]
  • Homo (Javanthropus) soloensis Oppenoorth, 1932
  • H. sapiens soloensis Dubois, 1940
  • H. neanderthalensis soloensis Weidenreich, 1940
  • Palaeoanthropus soloensis Evans, 1945
  • H. erectus ngandongensis Sartono, 1975

Solo Man (Homo erectus soloensis) is a subspecies of H. erectus that lived along the Solo River in Java, Indonesia, about 117,000 to 108,000 years ago in the Late Pleistocene. This population is the last known record of the species. It is known from 14 skullcaps, two tibiae, and a piece of the pelvis excavated near the village of Ngandong, and possibly three skulls from Sambungmacan and a skull from Ngawi depending on classification. The Ngandong site was first excavated from 1931 to 1933 under the direction of Willem Frederik Florus Oppenoorth, Carel ter Haar, and Gustav Heinrich Ralph von Koenigswald, but further study was set back by the Great Depression, World War II and the Indonesian War of Independence. In accordance with historical race concepts, Indonesian H. erectus subspecies were originally classified as the direct ancestors of Aboriginal Australians, but Solo Man is now thought to have no living descendants because the remains far predate modern human immigration into the area, which began roughly 55,000 to 50,000 years ago.

Contents

The Solo Man skull is oval-shaped in top view, with heavy brows, inflated cheekbones, and a prominent bar of bone wrapping around the back. The brain volume was quite large, ranging from 1,013 to 1,251 cubic centimetres (61.8 to 76.3 cu in), compared to an average of 1,270 cm3 (78 cu in) for present-day modern males and 1,130 cm3 (69 cu in) for present-day modern females. One potentially female specimen may have been 158 cm (5 ft 2 in) tall and weighed 51 kg (112 lb); males were probably much bigger than females. Solo Man was in many ways similar to the Java Man (H. e. erectus) that had earlier inhabited Java, but was far less archaic.

Solo Man likely inhabited an open woodland environment much cooler than present-day Java, along with elephants, tigers, wild cattle, water buffalo, tapirs, and hippopotamuses, among other megafauna. They manufactured simple flakes and choppers (hand-held stone tools), and possibly spears or harpoons from bones, daggers from stingray stingers, as well as bolas or hammerstones from andesite. They may have descended from or were at least closely related to Java Man. The Ngandong specimens likely died during a volcanic eruption. The species probably went extinct with the takeover of tropical rainforest and loss of preferred habitat, beginning by 125,000 years ago. The skulls sustained damage, but it is unclear if it resulted from an assault, cannibalism, the volcanic eruption, or the fossilisation process.

Research history

Despite what English naturalist Charles Darwin had hypothesised in his 1871 book Descent of Man , many late-19th century evolutionary naturalists postulated that Asia, not Africa, was the birthplace of humankind as it is midway between Europe and America, providing optimal dispersal routes throughout the world (the Out of Asia theory). Among these was German naturalist Ernst Haeckel who argued that the first human species (which he named "Homo primigenius") evolved on the now-disproven hypothetical continent "Lemuria" in what is now Southeast Asia, from a genus he termed " Pithecanthropus " ("ape-man"). "Lemuria" had supposedly sunk below the Indian Ocean, so no fossils could be found to prove this. Nevertheless, Haeckel's model inspired Dutch scientist Eugène Dubois to join the Royal Netherlands East Indies Army (KNIL) and search for his "missing link" in the Indonesian Archipelago. On Java, he found a skullcap and a femur (Java Man) dating to the late Pliocene or early Pleistocene at the Trinil site along the Solo River, which he named "P." erectus (using Haeckel's hypothetical genus name) in 1893. He attempted unsuccessfully to convince the European scientific community that he had found an upright-walking ape-man. They largely dismissed his findings as a malformed non-human ape. [1] :588

The "apeman of Java" nonetheless stirred up academic interest and, to find more remains, the Prussian Academy of Sciences in Berlin tasked German zoologist Emil Selenka with continuing the excavation of Trinil. Following his death in 1907, excavation was carried out by his wife and fellow zoologist Margarethe Lenore Selenka. Among the members was Dutch geologist Willem Frederik Florus Oppenoorth. The yearlong expedition was unfruitful, but the Geological Survey of Java continued to sponsor the excavation along the Solo River. Some two decades later, the Survey funded several expeditions to update maps of the island. Oppenoorth was made the head of the Java Mapping Program in 1930. One of their missions was to firmly distinguish Tertiary and Quaternary deposits, among the relevant sites a bed dating to the Pleistocene discovered by Dutch geologist Carel ter Haar in 1931, downriver from the Trinil site, near the village of Ngandong. [2]

Indonesia relief location map.jpg
Red pog.svg
Location of Ngandong on the island of Java

From 1931 to 1933, 12 skull pieces (including well-preserved skullcaps), as well as two right tibiae (shinbones), one of which was essentially complete, were recovered under the direction of Oppenoorth, ter Haar, and German-Dutch geologist Gustav Heinrich Ralph von Koenigswald. [3] :2–3 Midway through excavation, Oppenoorth retired from the Survey and returned to the Netherlands, replaced by Polish geologist Józef Zwierzycki  [ pl ] in 1933. At the same time, because of the Great Depression, the Survey's focus shifted to economically relevant geology, namely petroleum deposits, and the excavation of Ngandong ceased completely. In 1934, ter Haar published important summaries of the Ngandong operations before contracting tuberculosis. He returned to the Netherlands and died two years later. Von Koenigswald, who was hired principally to study Javan mammals, was fired in 1934. After much lobbying by Zwierzycki in the Survey, and after receiving funding from the Carnegie Institution for Science, von Koenigswald regained his position in 1937, but was too preoccupied with the Sangiran site to continue research at Ngandong. [3] :23–26

In 1935, the Solo Man remains were transported to Batavia (today, Jakarta, Java, Indonesia) in the care of local university professor Willem Alphonse Mijsberg, with the hope he would take over study of the specimens. Before he had the opportunity, the fossils were moved to Bandung, West Java in 1942 because of the Japanese occupation of the Dutch East Indies. [3] :23 Japanese forces interned von Koenigswald for 32 months. At the cessation of the war, he was released, but the Indonesian War of Independence erupted. Jewish-German anthropologist Franz Weidenreich (who fled China before the Japanese invasion in 1941) arranged with the Rockefeller Foundation and The Viking Fund for von Koenigswald, his wife Luitgarde, and the Javan human remains (including Solo Man) to come to New York. Von Koenigswald and Weidenreich studied the material at the American Museum of Natural History [4] until Weidenreich's death in 1948 (leaving behind a monograph on Solo Man posthumously published in 1951). [5] In his 1956 book Meeting Prehistoric Men, von Koenigswald included a 14-page account of the Ngandong project with several unpublished results. The Solo Man remains came to be stored at Utrecht University, the Netherlands. In 1967, von Koenigswald gave the material to Teuku Jacob for his doctoral research. Jacob oversaw the excavation of Ngandong from 1976 to 1978 and recovered two more skull specimens and a pelvic fragment. In 1978, von Koenigswald returned the material to Indonesia, and the Solo Man remains were moved to the Gadjah Mada University, Special Region of Yogyakarta (south-central Java). [3] :26

Solo Skull I.png
Skull I
Solo Skulls I and II.png
Skulls I and II
Solo Skulls III and IV.png
Skulls III and IV
Solo Skull V.png
Skull V
Solo Skull VI.png
Skull VI
Solo Skulls VII and VIII.png
Skulls VII and VIII
Solo Skull IX.png
Skull IX
Solo Skulls IX and X.png
Skulls IX and X
Solo Skulls XI.png
Skull XI
Gorilla, Solo Man, human endocasts.png
Gorilla, Solo, and modern endocasts
Solo Tibia B.png
Tibia B
Solo Tibiae A and B.png
Tibiae A (right) and B (left)

The specimens are: [5] :217

Age and taphonomy

The location of these fossils in the Solo terrace at the time of discovery was poorly documented. Oppenoorth, ter Haar, and von Koenigswald were only on site for 24 days of the 27 months of operation as they needed to oversee other Tertiary sites for the Survey. They left their geological assistants — Samsi and Panudju — to oversee the dig; their records are now lost. The Survey's site map remained unpublished until 2010 (over 75 years later) and is of limited use now, so the taphonomy and geological age of Solo Man have been contentious matters. [3] :5 All 14 specimens were reported to have been found in the upper section of Layer II (of six layers), which is a 46 cm (18 in)-thick stratum with gravelly sand and volcaniclastic hypersthene andesite. They are thought to have been deposited at around the same time, probably in a now-dry arm of the Solo River, about 20 m (66 ft) above the modern river. The site is about 40 m (130 ft) above sea level. [3] :15–18

Excavation of Skull VI at Ngandong, 1932 Ngandong excavation.png
Excavation of Skull VI at Ngandong, 1932

Volcaniclastic rock indicates deposition occurred soon after a volcanic eruption. Because of the sheer volume of fossils, humans and animals may have concentrated in great numbers in the valley upstream from the site due to the eruption or extreme drought. The ash would have poisoned the vegetation, or at least impeded its growth, leading to starvation and death among herbivores and humans, accumulating a mass of carcasses decomposing over several months. A lack of carnivore damage may indicate sufficient feeding was possible without having to resort to crunching through the bone. When the monsoon season came, lahars streaming from the volcano through the river channels swept the carcasses to the Ngandong site, where they and other debris created a jam because of the channel narrowing there. [6] [7] The H. erectus fossils from Sambungmacan, also along the Solo River, were possibly deposited in the same event. [3]

The dating attempts are:

Classification

Three skulls Sir William Turner used to racially define Aboriginal Australians in 1884 (Solo Man was later classified as ancestral to this population ) Report on the human crania and other bones of the skeletons collected during the voyage of H. M. S. Challenger in the years 1873-1876.png
Three skulls Sir William Turner used to racially define Aboriginal Australians in 1884 (Solo Man was later classified as ancestral to this population )

The racial classification of Aboriginal Australians, because of the robustness of the skull compared to that of other modern-day populations, has historically been a complicated question for European science since Johann Friedrich Blumenbach (the founder of physical anthropology) introduced the topic in 1795 in his De Generis Humani Varietate Nativa ("On the Natural History of Mankind"). Following the conception of evolution by Darwin, English anthropologist Thomas Henry Huxley suggested an ancestor–descendant relationship between European Neanderthals and Aboriginal Australians in 1863, which was furthered by later racial anthropologists until the discovery of Indonesian archaic humans. [12]

In 1932, Oppenoorth preliminarily drew parallels between the Solo Man skull and that of Rhodesian Man from Africa, Neanderthals, and modern day Aboriginal Australians. [2] At the time, humans were generally believed to have originated in Central Asia, as championed primarily by American palaeontologist Henry Fairfield Osborn and his protégé William Diller Matthew. They believed Asia was the "mother of continents" and the rising of the Himalayas and Tibet and subsequent drying of the region forced human ancestors to become terrestrial and bipedal. They maintained that populations which retreated to the tropics – namely Dubois's Java Man and the "Negroid race" — substantially regressed (degeneration theory). They also rejected Raymond Dart's South African Taung child ( Australopithecus africanus ) as a human ancestor, favouring the hoax Piltdown Man from Britain. [1] :599–602 At first, Oppenoorth believed the Ngandong material represented an Asian type of Neanderthal which was more closely allied with the Rhodesian Man (also considered a Neanderthal type), and gave it a generic distinction as "Javanthropus soloensis". Dubois considered Solo Man to be more or less identical to the East Javan Wajak Man (now classified as a modern human), so Oppenoorth subsequently began using the name "Homo (Javanthropus) soloensis". [5] Oppenoorth hypothesised that the Java Man evolved in Indonesia and was the predecessor of modern day Aboriginal Australians, Solo Man being a transitional fossil. He considered Rhodesian Man a member of this same group. As for the Chinese Peking Man (now H. e. pekinensis), he believed it dispersed west and gave rise to the Neanderthals. [2]

Thus, the ancient Java Man, Solo Man, and Rhodesian Man were commonly grouped together in the "Pithecanthropoid-Australoid" lineage. "Australoid" includes Australian Aborigines and Melanesians. This was an extension of the multiregional origin of modern humans championed by Weidenreich and American racial anthropologist Carleton S. Coon, who believed that all modern races and ethnicities (which were classified into separate subspecies or even species until the mid-20th century) evolved independently from a local archaic human species (polygenism). Australian aborigines were considered the most primitive race alive. [12] In the 1950s, German evolutionary biologist Ernst Mayr entered the field of palaeoanthropology, and, surveying a "bewildering diversity of names", decided to define only three species of Homo: "H. transvaalensis" (the australopithecines), H. erectus (including Solo Man and several putative African and Asian taxa), and Homo sapiens (including anything younger than H. erectus, such as modern humans and Neanderthals). Mayr defined them as a sequential lineage, each species evolving into the next (chronospecies). Though Mayr later changed his opinion on the australopithecines (recognising Australopithecus ), and a few species have since been named or regained some acceptance, his more conservative view of archaic human diversity became widely adopted in the subsequent decades. [13] Though Mayr did not expand upon the subspecies of H. erectus, subsequent authors began formally sinking species from all parts of the Old World into it. Solo Man was placed into the "Neanderthal/Neanderthalien/Neanderthaloid group" by Weidenreich in the 1940s, which he reserved for specimens apparently transitional between H. erectus and H. sapiens. The group could also be classified under the now-defunct genus "Palaeoanthropus". Solo man was first classified as a subspecies of H. erectus by American physical anthropologist Carleton Coon in his 1962 book The Origin of Races. [14]

The WLH-50 skullcap, one of the oldest modern human remains of Australia, was used as evidence of Solo Man/modern human interbreeding. Willandra Lakes Human 50 calvaria.png
The WLH-50 skullcap, one of the oldest modern human remains of Australia, was used as evidence of Solo Man/modern human interbreeding.

The claim that Aboriginal Australians were descended from Asian H. erectus was expanded upon in the 1960s and 1970s as some of the oldest known (modern) human fossils were being recovered from Australia, primarily under the direction of Australian anthropologist Alan Thorne. He noted some populations were prominently more robust than others, so he suggested Australia was colonised in two waves ("di-hybrid model"): the first wave being highly robust and descending from nearby H. erectus, and the second wave more gracile (less robust) and descending from anatomically modern East Asians (who, in turn, descended from Chinese H. erectus). It was subsequently discovered that some of the more robust specimens are younger than the gracile ones. In the 1980s, as African species like A. africanus became widely accepted as human ancestors and race became less salient in anthropology, the Out of Africa theory overturned the Out of Asia and multiregional models. The multiregional model was consequently reworked into local populations of archaic humans having interbred and contributed at least some ancestry to modern populations in their respective regions, otherwise known as the assimilation model. Solo Man fits into this by having hybridised with the fully modern ancestors of Australian Aborigines travelling south through Southeast Asia. The assimilation model was not ubiquitously supported. In 2006, Australian palaeoanthropologist Steve Webb speculated instead that Solo Man was the first human species to reach Australia, and more robust modern Australian specimens represent hybrid populations. [12] :3

The date of 117 to 108 thousand years ago for Solo Man, predating modern human dispersal through Southeast Asia (and eventually into Australia), is at odds with this conclusion. Such an ancient date leaves Solo Man with no living descendants. [7] Similarly, a 2021 genomic study looking at the genomes of over 400 modern humans (of which 200 came from Island Southeast Asia) found no evidence of any "super-archaic" (i. e. H. erectus) introgression. [15] Solo Man has generally been considered to have descended from Java Man (H. e. erectus, typified by the Sangiran/Trinil populations), and the three skulls from Sambungmacan and the skull from Ngawi have been assigned to H. e. soloensis or some intermediary stage between H. e. erectus and H. e. soloensis. It is largely unclear if there was gene flow from the continent. The alternate hypothesis, first proposed by Jacob in 1973, is that the Sangiran/Trinil and Ngandong/Ngawi/Sambungmacan populations were sister groups that evolved parallel to each other. [16] If the alternate is correct, this could warrant species distinction as "H. soloensis", but the definitions of species and subspecies, especially in palaeoanthropology, are poorly drawn. [17]

Anatomy

Speculative reconstruction of a complete skull by Franz Weidenreich Solo Man reconstruction.png
Speculative reconstruction of a complete skull by Franz Weidenreich

The identification as adult or juvenile was based on the closure of the cranial sutures, assuming they closed at a rate similar to modern humans (though they may have closed at earlier ages in H. erectus). Characteristic of H. erectus, the skull is exceedingly thick in Solo Man, ranging from double to triple what would be seen in modern humans. Male and female specimens were distinguished by assuming males were more robust than females, though both males and females are exceptionally robust compared to other Asian H. erectus. The adult skulls average 202 mm × 152 mm (8.0 in × 6.0 in) in length times breadth, and are proportionally similar to that of the Peking Man but have a much larger circumference. Skull V is the longest at 221 mm (8.7 in). [5] :236–239 For comparison, the dimensions of modern human skulls average 176 mm × 145 mm (6.9 in × 5.7 in) for men and 171 mm × 140 mm (6.7 in × 5.5 in) for women. [18]

The Solo Man remains are characterised by more derived traits than more archaic Javan H. erectus, most notably a larger brain size, an elevated cranial vault, reduced postorbital constriction, and less developed brow ridges. They still closely resemble earlier H. erectus. [16] Like Peking Man, there was a slight sagittal keel running across the midline of the skull. Compared to other Asian H. erectus, the forehead is proportionally low and also has a low angle of inclination. The brow ridges do not form a continuous bar like in Peking Man, but curve downwards at the midpoint, forming a nasal bridge. The brows are quite thick, especially at the lateral ends (nearest the edge of the face). Like Peking Man, the frontal sinuses are confined to between the eyes rather than extending into the brow region. Compared to Neanderthals and modern humans, the area the temporal muscle would have covered is rather flat. The brow ridges merge into markedly thickened cheek bones. The skull is phenozygous, in that the skullcap is proportionally narrow compared to the cheekbones, so that the latter are still visible when looking down at the skull in top-view. The squamous part of the temporal bone is triangular like that of Peking Man, and the infratemporal crest is quite sharp. [5] :240–242 Like earlier Javan H. erectus, the inferior and superior temporal lines (on the parietal bone) diverge towards the back of the skull. [19] :143

At the back of the skull, there is a sharp, thick occipital torus (a projecting bar of bone) which marks a clear separation between the occipital and nuchal planes. The occipital torus projects the most at the part corresponding to the external occipital protuberance in modern humans. The base of the temporal bone is consistent with Java Man and Peking Man rather than Neanderthals and modern humans. Unlike Neanderthals and modern humans, there is a defined bony pyramid structure near the root of the pterygoid bone. The mastoid part of the temporal bone at the base of the skull notably juts out. The occipital condyles (which connect the skull to the spine) are proportionally small compared to the foramen magnum (where the spinal cord passes into the skull). Large, irregular bony projections lie directly behind the occipital condyles. [5] :246–249

The brain volumes of the six Ngandong specimens for which the metric is calculable range from 1,013 to 1,251 cm3. The Ngawi I skull measures 1,000 cm3; and the three Sambungmacan skulls (respectively) 1,035; 917; and 1,006 cm3. This makes for an average of over 1,000 cm3. [19] :136 For comparison, present-day modern humans average 1,270 cm3 for males and 1,130 cm3 for females, with a standard deviation of roughly 115 and 100 cm3. [20] Chinese H. erectus (ranging 780 to 250 thousand years ago) average roughly 1,028 cm3, and Javan H. erectus (excluding Ngandong) about 933 cm3. Overall, Asian H. erectus are big-brained, averaging roughly 1,000 cm3. [21] The base of the braincase, and thus the brain, seems to have been flat rather than curved. The sella turcica at the base of the skull, near the pituitary gland, is much larger than that of modern humans, which Weidenreich in 1951 cautiously attributed to an enlarged gland which caused the extraordinary thickening of the bones. [5] :285

Of the two known tibiae, tibia A is much more robust than Tibia B and is consistent overall with Neanderthal tibiae. [5] Like other H. erectus, the tibiae are thick and heavy. Based on the reconstructed length of 380 mm (15 in), Tibia B may have belonged to a 158 cm (5 ft 2 in) tall, 51 kg (112 lb) individual. Tibia A is assumed to have belonged to a larger individual. Asian H. erectus, for which height estimates are taken (a rather small sample size), typically range from 150–160 cm (4 ft 11 in – 5 ft 3 in), with Indonesian H. erectus in tropical environments typically scoring on the higher end, and continental specimens in colder latitudes on the lower end. The single pelvic fragment from Ngandong has not yet been described formally. [19] :151–152

Solo Skull XI anterior.png
Solo Skull XI posterior.png
Solo Skull XI lateral.png
Solo Skull XI dorsal.png
Solo Skull VI ventral.png
Views and notes of (from left to right) Skull XI from the front, back, side, and top, and Skull VI from the underside, Franz Weidenreich, 1951

Culture

Palaeohabitat

At the species level, the Ngandong fauna is similar overall to the older Kedung Brubus fauna roughly 800 to 700 thousand years ago, a time of mass immigration of large mammal species to Java, including Asian elephants and Stegodon . Other Ngandong fauna include the tiger Panthera tigris soloensis , Malayan tapir, the hippo Hexaprotodon , sambar deer, water buffalo, the cow Bos palaesondaicus , pigs, and crab-eating macaque. These are consistent with an open woodland environment. [22] The presence of the common crane in the nearby contemporaneous Watualang site could indicate much cooler conditions than today. [23] The driest conditions probably corresponded to the glacial maximum roughly 135,000 years ago, exposing the Sunda shelf and connecting the major Indonesian islands to the continent. By 125,000 years ago, the climate became much wetter, making Java an island, and allowing for the expansion of tropical rainforests. This caused the succession of the Ngandong fauna by the Punung fauna, which represents the modern day animal assemblage of Java, though more typical Punung fauna — namely orangutans and gibbons — probably could not penetrate the island until it was reconnected to the continent after 80,000 years ago. [22] H. erectus, a specialist in woodland and savannah biomes, likely went extinct with the loss of the last open-habitat refugia. [24]

H. e. soloensis was the last population of a long occupation history of the island of Java by H. erectus, beginning 1.51 to 0.93 million years ago at the Sangiran site, continuing 540 to 430 thousand years ago at the Trinil site, and finally 117 to 108 thousand years ago at Ngandong. If the date is correct for Solo Man, then they would represent a terminal population of H. erectus which sheltered in the last open-habitat refuges of East Asia before the rainforest takeover. Before the immigration of modern humans, Late Pleistocene Southeast Asia was also home to H. floresiensis endemic to the island of Flores, Indonesia, and H. luzonensis endemic to the island of Luzon, the Philippines. Genetic analysis of present-day Southeast Asian populations indicates the widespread dispersal of the Denisovans (a species currently recognisable only by their genetic signature) across Southeast Asia, whereupon they interbred with immigrating modern humans 45.7 and 29.8 thousand years ago. [7] A 2021 genomic study indicates that, aside from the Denisovans, modern humans never interbred with any of these endemic human species, unless the offspring were unviable or the hybrid lineages have since died out. [15]

Judging by the sheer number of specimens deposited at Ngandong at the same time, there may have been a sizeable population of H. e soloensis before the volcanic eruption which resulted in their interment, but population is difficult to approximate with certainty. The Ngandong site was some distance away from the northern coast of the island, but it is unclear where the southern shoreline and the mouth of the Solo River would have been. [3]

Technology

Supposed Solo Man tools: a) stingray barb, b) bone harpoon or spearhead, c) deer antler fragment Solo Valley tools.png
Supposed Solo Man tools: a) stingray barb, b) bone harpoon or spearhead, c) deer antler fragment

In 1936, while studying photos taken by Dutch archaeologist Pieter Vincent van Stein Callenfels  [ nl ], Oppenoorth made note of several broken animal bone remains, most notably damage to a large tiger skull and some deer antlers, which he considered evidence of bone technology. He suggested some deer antlers had a carved bird skull hafted onto the end to be used as axes. In 1951, Weidenreich voiced his scepticism—as the bones were invariably damaged by the river, and perhaps crocodiles and other natural processes—arguing instead that none of the bones reliably show any evidence of human modification. Oppenoorth further suggested a long piece of bone carved with an undulating pattern on both sides was used as a harpoon, similar to harpoons manufactured in the Magdalenian of Europe, but Weidenreich interpreted it as a spearhead. Weidenreich made note of anomalous inland stingray stingers at Ngandong, which he supposed were collected by Solo Man for use as daggers or arrowheads, similar to some recent South Pacific peoples. [5] :216–218 It is unclear if this apparent bone technology can be associated with Solo Man or later modern human activity, [23] though the Trinil H. e. erectus population seems to have worked with such material, manufacturing scrapers from Pseudodon shells and possibly opening them up with shark teeth. [25]

Oppenoorth also identified a perfectly round andesite stone ball from Ngandong, a common occurrence in the Solo Valley, ranging in diameter from 67 to 92 mm (2.6 to 3.6 in). As well, similar balls have been identified in contemporaneous and younger European Mousterian and African Middle Stone Age sites, as ancient as African Acheulean sites (notably Olorgesailie, Kenya). [5] On Java, they have been found at Watualang (contemporaneous with Ngandong) and Sangiran. [26] Traditionally, these have been interpreted as bolas (tied together in twos or threes and flung as a hunting weapon), but also individually thrown projectiles, club heads, or plant-processing or bone-breaking tools. In 1993, American archaeologists Kathy Schick and Nicholas Toth demonstrated the spherical shape could be reproduced simply if the stone is used as a hammer for an extended period. [27]

In 1938, von Koenigswald returned to the Ngandong site along with archaeologists Helmut de Terra, Hallam L. Movius and Pierre Teilhard de Chardin to collect lithic cores and flakes (i.e. stone tools). Because of wear caused by the river, it is difficult to identify with confidence that some of these rocks are actual tools. They are small and simple, usually smaller than 5 cm (2 in) and made most commonly of chalcedony (but also chert and jasper) washed up by the river. A few volcanic rocks and wood fragments seem to have been modified into heavy duty chopping tools. [28] In 1973, the nearby Sambungmacan site yielded a unifacial chopper (as well as a flake) made of andesite. [23] [26] Because of how few tools have been recovered, it is impossible to categorise Solo Man into any distinct industry. [23] [26] Like many other Southeast Asian sites predating modern humans, the Ngandong site lacks sophisticated choppers, hand axes, or any other complex chopping tool characteristic of the Acheulean of Western Eurasian and African sites. In 1944, Movius suggested this was because of a great technological divide between western and eastern H. erectus (the "Movius Line") caused by a major difference in habitat (open area vs. tropical rainforest), as the chopping tools are generally interpreted as evidence of big game hunting, which he believed was only possible when humans spread out onto open plains. [28]

General distribution of Middle Pleistocene handaxes according to the archaeological record Biface Extension.png
General distribution of Middle Pleistocene handaxes according to the archaeological record

Though a strict "Movius Line" is not well supported anymore with the discovery of some hand axe technology in Middle Pleistocene East Asia, handaxes are still conspicuously rare and crude in East Asia compared to western contemporaries. This has been explained as: the Acheulean emerged in Africa after human dispersal through East Asia (but this would require that the two populations remained separated for nearly two million years); East Asia had poorer quality raw materials, namely quartz and quartzite (but some Chinese localities produced handaxes from these materials and East Asia is not completely void of higher-quality minerals); East Asian H. erectus used biodegradable bamboo instead of stone for chopping tools (but this is difficult to test); or East Asia had a lower population density, leaving few tools behind in general (though demography is difficult to approximate in the fossil record). [29]

Possible cannibalism

In 1951, Weidenreich and von Koenigswald made note of major injuries in Skulls IV and VI, which they believed were caused by a cutting instrument and a blunt instrument, respectively. They bear evidence of inflammation and healing, so the individuals probably survived the altercation. Weidenreich and von Koenigswald noted that only the skullcaps were found, lacking even the teeth, which is highly unusual. So, they interpreted at least Skulls IV and VI as victims of an "unsuccessful assault", and the other skulls where the base was broken out "the result of more successful attempts to slay the victims," presuming this was done by other humans to access and consume the brain. They were unsure if this was done by a neighbouring H. e. soloensis tribe, or "by more advanced human beings who would have given evidence of their 'superior' culture by slaying their more primitive fellowsman". The latter scenario had already been proposed for the Peking Man (which has similarly conspicuous pathology) by French palaeontologist Marcellin Boule in 1937. Nonetheless, Weidenreich and von Koenigswald conceded that some of the injuries could have been related to the volcanic eruption instead. Von Koenigswald suggested only skullcaps exist because Solo Man was modifying skulls into skull cups, but Weidenreich was sceptical of this as the jagged rims of especially Skulls I, V, and X are not well suited for this purpose. [5] :238–239

Cannibalism and ritual headhunting have also been proposed for the Trinil, Sangiran, and Modjokerto sites (all in Java) based on the conspicuous lack of any remains other than the skullcap. This had been reinforced by the historic practice of headhunting and cannibalism in some modern Indonesian, Australian, and Polynesian groups, which at the time were believed to have descended from these H. erectus populations. In 1972, Jacob alternatively suggested that because the base of the skull is weaker than the skullcap, and since the remains had been transported through a river with large stone and boulders, this was a purely natural phenomenon. As for the lack of the rest of the skeleton, if tiger predation was a factor, tigers usually only leave the head since it has the least amount of meat on it. Further, the Ngandong material, especially Skulls I and IX, were damaged during excavation, cleaning, and preparation. [30]

See also

Related Research Articles

<span class="mw-page-title-main">Peking Man</span> Subspecies of the genus Homo (fossil)

Peking Man is a subspecies of H. erectus which inhabited the Zhoukoudian cave site in modern northern China during the Chibanian. The first fossil, a tooth, was discovered in 1921, and the Zhoukoudian Cave has since then become the most productive H. erectus site in the world. Peking Man was instrumental in the foundation of Chinese anthropology, and fostered an important dialogue between Western and Eastern science for decades to come. The fossils became the centre of anthropological discussion, and were classified as a direct human ancestor, propping up the Out of Asia hypothesis that humans evolved in Asia.

<i>Homo heidelbergensis</i> Extinct species of archaic human

Homo heidelbergensis is an extinct species or subspecies of archaic human which existed during the Middle Pleistocene. It was subsumed as a subspecies of H. erectus in 1950 as H. e. heidelbergensis, but towards the end of the century, it was more widely classified as its own species. It is debated whether or not to constrain H. heidelbergensis to only Europe or to also include African and Asian specimens, and this is further confounded by the type specimen being a jawbone, because jawbones feature few diagnostic traits and are generally missing among Middle Pleistocene specimens. Thus, it is debated if some of these specimens could be split off into their own species or a subspecies of H. erectus. Because the classification is so disputed, the Middle Pleistocene is often called the "muddle in the middle".

<i>Meganthropus</i> Hominin fossil

Meganthropus is an extinct genus of non-hominin hominid ape, known from the Pleistocene of Indonesia. It is known from a series of large jaw and skull fragments found at the Sangiran site near Surakarta in Central Java, Indonesia, alongside several isolated teeth. The genus has a long and convoluted taxonomic history. The original fossils were ascribed to a new species, Meganthropus palaeojavanicus, and for a long time was considered invalid, with the genus name being used as an informal name for the fossils.

<i>Homo</i> Genus of hominins that includes humans and their closest extinct relatives

Homo is a monotypic genus that emerged from the genus Australopithecus and encompasses the extant species Homo sapiens and several extinct species classified as either ancestral to or closely related to modern humans, including Homo erectus and Homo neanderthalensis. The oldest member of the genus is Homo habilis, with records of just over 2 million years ago. Homo, together with the genus Paranthropus, is probably sister to Australopithecus africanus, which itself had split from the lineage of Pan, the chimpanzees.

<span class="mw-page-title-main">Java Man</span> Subspecies of Homo erectus (fossil) discovered on the island of Java in 1891

Java Man is an early human fossil discovered in 1891 and 1892 on the island of Java. Estimated to be between 700,000 and 1,490,000 years old, it was, at the time of its discovery, the oldest hominid fossil ever found, and it remains the type specimen for Homo erectus.

<span class="mw-page-title-main">Sangiran</span> Archaeological excavation site in Java in Indonesia

Sangiran is an archaeological excavation site in Java in Indonesia. According to a UNESCO report (1995) "Sangiran is recognized by scientists to be one of the most important sites in the world for studying fossil man, ranking alongside Zhoukoudian (China), Willandra Lakes (Australia), Olduvai Gorge (Tanzania), and Sterkfontein, and more fruitful in finds than any of these."

<span class="mw-page-title-main">Gustav Heinrich Ralph von Koenigswald</span> German-Dutch paleontologist and geologist (1902–1982)

Gustav Heinrich Ralphvon Koenigswald was a German-Dutch paleontologist and geologist who conducted research on hominins, including Homo erectus. His discoveries and studies of hominid fossils in Java and his studies of other important fossils of south-eastern Asia firmly established his reputation as one of the leading figures of 20th-century paleo-anthropology.

Human taxonomy is the classification of the human species within zoological taxonomy. The systematic genus, Homo, is designed to include both anatomically modern humans and extinct varieties of archaic humans. Current humans have been designated as subspecies Homo sapiens sapiens, differentiated, according to some, from the direct ancestor, Homo sapiens idaltu.

<span class="mw-page-title-main">Archaic humans</span> Extinct relatives of modern humans

A number of varieties of Homo are grouped into the broad category of archaic humans in the period that precedes and is contemporary to the emergence of the earliest early modern humans around 300 ka. Among the earliest remains of H. sapiens are those from Jebel Irhoud in Morocco, Florisbad in South Africa (259 ka), and Omo-Kibish I in southern Ethiopia. The term typically includes H. antecessor, H. bodoensis, Denisovans (H. denisova), H. heidelbergensis (600–200 ka), Neanderthals, and H. rhodesiensis (300–125 ka).

<span class="mw-page-title-main">Trinil</span> Palaeoanthropological site in Java, Indonesia

Trinil is a palaeoanthropological site on the banks of the Bengawan Solo River in Ngawi Regency, East Java Province, Indonesia. It was at this site in 1891 that the Dutch anatomist Eugène Dubois discovered the first early hominin remains to be found outside of Europe: the famous "Java Man" specimen.

<span class="mw-page-title-main">Lantian Man</span> Subspecies of the genus Homo (fossil)

Lantian Man, Homo erectus lantianensis) is a subspecies of Homo erectus known from an almost complete mandible from Chenchiawo (陈家窝) Village discovered in 1963, and a partial skull from Gongwangling (公王岭) Village discovered in 1964, situated in Lantian County on the Loess Plateau. The former dates to about 710–684 thousand years ago, and the latter 1.65–1.59 million years ago. This makes Lantian Man the second-oldest firmly dated H. erectus beyond Africa, and the oldest in East Asia. The fossils were first described by Woo Ju-Kan in 1964, who considered the subspecies an ancestor to Peking Man.

<span class="mw-page-title-main">Prehistoric Asia</span> Period in the history of Asia

Prehistoric Asia refers to events in Asia during the period of human existence prior to the invention of writing systems or the documentation of recorded history. This includes portions of the Eurasian land mass currently or traditionally considered as the continent of Asia. The continent is commonly described as the region east of the Ural Mountains, the Caucasus Mountains, the Caspian Sea, Black Sea and Red Sea, bounded by the Pacific, Indian, and Arctic Oceans. This article gives an overview of the many regions of Asia during prehistoric times.

<i>Homo erectus</i> Extinct species of archaic human

Homo erectus is an extinct species of archaic human from the Pleistocene, with its earliest occurrence about 2 million years ago. Its specimens are among the first recognizable members of the genus Homo.

The multiregional hypothesis, multiregional evolution (MRE), or polycentric hypothesis, is a scientific model that provides an alternative explanation to the more widely accepted "Out of Africa" model of monogenesis for the pattern of human evolution.

<span class="mw-page-title-main">Prehistoric Indonesia</span>

Prehistoric Indonesia is a prehistoric period in the Indonesian archipelago that spanned from the Pleistocene period to about the 4th century CE when the Kutai people produced the earliest known stone inscriptions in Indonesia. Unlike the clear distinction between prehistoric and historical periods in Europe and the Middle East, the division is muddled in Indonesia. This is mostly because Indonesia's geographical conditions as a vast archipelago caused some parts — especially the interiors of distant islands — to be virtually isolated from the rest of the world. West Java and coastal Eastern Borneo, for example, began their historical periods in the early 4th century, but megalithic culture still flourished and script was unknown in the rest of Indonesia, including in Nias and Toraja. The Papuans on the Indonesian part of New Guinea island lived virtually in the Stone Age until their first contacts with modern world in the early 20th century. Even today living megalithic traditions still can be found on the island of Sumba and Nias.

<span class="mw-page-title-main">Mojokerto child</span> Hominin fossil

The Mojokerto child, also known as Mojokerto 1 and Perning 1, is the fossilized skullcap of a juvenile early human. It was discovered in February 1936 near Mojokerto by a member of an excavation team led by Ralph von Koenigswald. Von Koenigswald first called the specimen Pithecanthropus modjokertensis but soon renamed it Homo modjokertensis because Eugène Dubois – the discoverer of Java Man, which was then called Pithecanthropus erectus – disagreed that the new fossil was a Pithecanthropus. The skullcap is now identified as belonging to the species Homo erectus.

Panthera tigris soloensis, known as the Ngandong tiger, is an extinct subspecies of the modern tiger species. It inhabited the Sundaland region of Indonesia during the Pleistocene epoch.

<i>Homo naledi</i> South African archaic human species

Homo naledi is an extinct hominin species discovered in 2013 in the Rising Star Cave system, Gauteng province, South Africa, dating to the Middle Pleistocene 335,000–236,000 years ago. The initial discovery comprises 1,550 specimens of bone, representing 737 different skeletal elements, and at least 15 different individuals. Despite this exceptionally high number of specimens, their classification with other Homo species remains unclear.

<span class="mw-page-title-main">Archaic humans in Southeast Asia</span>

The region of Southeast Asia is considered a possible place for the evidence of archaic human remains that could be found due to the pathway between Australia and mainland Southeast Asia, where the migration of multiple early humans has occurred out of Africa. One of many pieces of evidence is of the early human found in central Java of Indonesia in the late 19th century by Eugene Dubois, and later in 1937 at Sangiran site by G.H.R. van Koenigswald. These skull and fossil materials are Homo erectus, named Pithecanthropus erectus by Dubois and Meganthropus palaeojavanicus by van Koenigswald. They were dated to c. 1.88 and 1.66 Ma, as suggested by Swisher et al. by analysis of volcanic rocks.

<i>Ape to Man</i> Dramatised documentary on the finding the missing link in evolution

Ape to Man is a dramatised documentary on the scientific community's journey to find the missing link in human evolution, between our ancestors the apes and modern man today.

References

  1. 1 2 Hsiao-Pei, Y. (2014). "Evolutionary Asiacentrism, Peking Man, and the Origins of Sinocentric Ethno-Nationalism". Journal of the History of Biology . 47 (4): 585–625. doi:10.1007/s10739-014-9381-4. PMID   24771020. S2CID   23308894.
  2. 1 2 3 4 Oppenoorth, W. F. F. (1932). "Solo Man—A New Fossil Skull". Scientific American . 147 (3): 154–155. Bibcode:1932SciAm.147..154O. doi:10.1038/scientificamerican0932-154. JSTOR   24966028.
  3. 1 2 3 4 5 6 7 8 9 10 11 Huffman, O. F.; de Vos, J.; Berkhout, A. W.; Aziz, F. (2010). "Provenience reassessment of the 1931–1933 Ngandong Homo erectus (Java), confirmation of the bone-bed origin reported by the discoverers". PaleoAnthropology. 2010: 1–60. doi:10.4207/PA.2010.ART34. Archived from the original on 2021-10-04. Retrieved 2021-01-13.
  4. Tobias, P. V. (1976). "The life and times of Ralph von Koenigswald: Palaeontologist extraordinary". Journal of Human Evolution . 5 (5): 406–410. doi:10.1016/0047-2484(76)90082-8.
  5. 1 2 3 4 5 6 7 8 9 10 11 Weidenreich, F.; von Koenigswald, G. H. R. (1951). "Morphology of Solo man". Anthropological Papers of the AMNH. 43. hdl:2246/297. Archived from the original on 2021-03-30. Retrieved 2021-04-04.
  6. Huffman, O. F.; de Vos, J.; Balzeau, A.; Berkhout, A. W.; Voight, B. (2010). "Mass death and lahars in the taphonomy of the Ngandong Homo erectus bonebed, and volcanism in the hominin record of eastern Java". Abstracts of the PaleoAnthropology Society 2010 Meetings, PaleoAnthropology: A14. Archived from the original on 2021-06-29. Retrieved 2021-06-29.
  7. 1 2 3 4 Rizal, Y.; Westaway, K. E.; Zaim, Y.; van den Bergh; Bettis III, E. A.; Morwood, M. J.; Huffman, O. F.; Grün, R.; Joannes-Boyau, R.; Bailey, R. M.; Sidarto; Westaway, M. C.; Kurniawan, I.; Moore, M. W.; Storey, M.; Aziz, F.; Suminto; Zhao, J.; Aswan; Sipola, M. E.; Larick, R.; Zonneveld, J.-P.; Scott, R.; Putt, S.; Ciochon, R. L. (2020). "Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago". Nature . 577 (7790): 381–385. doi:10.1038/s41586-019-1863-2. ISSN   0028-0836. PMID   31853068. S2CID   209410644.
  8. 1 2 Swisher, III, C. C.; Rink, W. J.; Antón, S. C.; Schwarcz, H. P.; Curtis, G. H.; Widiasmoro, A. S. (1996). "Latest Homo erectus of Java: Potential Contemporaneity with Homo sapiens in Southeast Asia". Science . 274 (5294): 1870–1874. Bibcode:1996Sci...274.1870S. doi:10.1126/science.274.5294.1870. JSTOR   2891688. PMID   8943192. S2CID   22452375.
  9. 1 2 Yokoyama, Y.; Falguères, C.; Sémah, F.; Jacob, T. (2008). "Gamma-ray spectrometric dating of late Homo erectus skulls from Ngandong and Sambungmacan, Central Java, Indonesia". Journal of Human Evolution . 55 (2): 274–277. doi:10.1016/j.jhevol.2008.01.006. PMID   18479734.
  10. O'Connell, J. F.; Allen, J.; Williams, M. A. J.; Williams, A. N.; Turney, C. S. M.; Spooner, N. A.; Kamminga, J.; Brown, G.; Cooper, A. (2018). "When did Homo sapiens first reach Southeast Asia and Sahul?". Proceedings of the National Academy of Sciences . 115 (34): 8482–8490. Bibcode:2018PNAS..115.8482O. doi: 10.1073/pnas.1808385115 . PMC   6112744 . PMID   30082377.
  11. Indriati, E.; Swisher III, C. C.; Lepre, C.; Quinn, R. L.; Suriyanto, R. A.; Hascaryo, A. T.; Grün, R.; Feibel, C. S.; Pobiner, B. L.; Aubert, M.; Lees, W.; Antón, S. C. (2011). "The Age of the 20 Meter Solo River Terrace, Java, Indonesia and the Survival of Homo erectus in Asia". PLOS One . 6 (6): e21562. Bibcode:2011PLoSO...621562I. doi: 10.1371/journal.pone.0021562 . PMC   3126814 . PMID   21738710.
  12. 1 2 3 4 5 Curnoe, D. (2011). "A 150-Year Conundrum: Cranial Robusticity and Its Bearing on the Origin of Aboriginal Australians". International Journal of Evolutionary Biology. 2011: 2–3. doi: 10.4061/2011/632484 . PMC   3039414 . PMID   21350636.
  13. Schwartz, J. H.; Tattersall, I. (2010). "Fossil evidence for the origin of Homo sapiens". American Journal of Physical Anthropology . 143 (S51): 96–98, 101–103. doi: 10.1002/ajpa.21443 . PMID   21086529.
  14. Howells, W. W. (1981). "5. Homo erectus in human descent: ideas and problems". Homo erectus: Papers in Honor of Davidson Black. University of Toronto Press. p. 68. ISBN   9781487585372. JSTOR   10.3138/j.ctvcj2jdw.11.
  15. 1 2 Teixeira, J. C.; Jacobs, G. S.; Stringer, C.; Tuke, J.; Hudjashov, G.; Purnomo, G. A.; Sudoyo, H.; Cox, M. P.; Tobler, R.; Turney, C. S. M.; Cooper, A.; Helgen, K. M. (2021). "Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture". Nature Ecology and Evolution . 5 (5): 616–624. Bibcode:2021NatEE...5..616T. doi:10.1038/s41559-021-01408-0. PMID   33753899. S2CID   232323599.
  16. 1 2 Kaifu, Y.; Aziz, F.; Indriati, E.; Jacob, T.; Kurniawan, I.; Baba, H. (2008). "Cranial morphology of Javanese Homo erectus: New evidence for continuous evolution, specialization, and terminal extinction". Journal of Human Evolution . 55 (4): 578. doi:10.1016/j.jhevol.2008.05.002. PMID   18635247.
  17. Zeitoun, V.; Détroit, F.; Grimaud-Hervé, D.; Widianto, H. (2010). "Solo man in question: Convergent views to split Indonesian Homo erectus in two categories" (PDF). Quaternary International . 223–224: 288. Bibcode:2010QuInt.223..281Z. doi:10.1016/j.quaint.2010.01.018. S2CID   84764668. Archived (PDF) from the original on 2021-04-29. Retrieved 2021-05-22.
  18. Li, H.; Ruan, J.; Xie, Z.; Wang, H.; Liu, W. (2007). "Investigation of the critical geometric characteristics of living human skulls utilising medical image analysis techniques". International Journal of Vehicle Safety. 2 (4): 345. doi:10.1504/IJVS.2007.016747.
  19. 1 2 3 Antón, S. C. (2003). "Natural history of Homo erectus†". American Journal of Physical Anthropology . 122 (37): 136–152. doi: 10.1002/ajpa.10399 . PMID   14666536.
  20. Allen, J. S.; Damasio, H.; Grabowski, T. J. (2002). "Normal neuroanatomical variation in the human brain: an MRI-volumetric study". American Journal of Physical Anthropology . 118 (4): 351. doi:10.1002/ajpa.10092. PMID   12124914. S2CID   21705705.
  21. Antón, S. C.; Taboada, H. G.; Middleton, E. R.; Rainwater, C. W.; Taylor, A. B.; Turner, T. R.; Turnquist, J. E.; Weinstein, K. J.; Williams, S. A. (2016). "Morphological variation in Homo erectus and the origins of developmental plasticity". Philosophical Transactions of the Royal Society B . 371 (1698): 20150236. doi:10.1098/rstb.2015.0236. PMC   4920293 . PMID   27298467.
  22. 1 2 Van den Bergh, G. D.; de Vos, J.; Sondaar, P. Y. (2001). "The Late Quaternary palaeogeography of mammal evolution in the Indonesian Archipelago". Palaeogeography, Palaeoclimatology, Palaeoecology . 171 (3–4): 387–392. Bibcode:2001PPP...171..385V. doi:10.1016/s0031-0182(01)00255-3.
  23. 1 2 3 4 Bellwood, P. (1997). "Homo erectus in Sundaland". Prehistory of the Indo-Malaysian Archipelago: Revised Edition. Honolulu: University of Hawaii Press. pp. 65–66. ISBN   978-1-921313-11-0. JSTOR   j.ctt24hf81.5.
  24. Louys, J.; Roberts, P. (2020). "Environmental drivers of megafauna and hominin extinction in Southeast Asia". Nature . 586 (7829): 402–406. Bibcode:2020Natur.586..402L. doi:10.1038/s41586-020-2810-y. hdl: 10072/402368 . PMID   33029012. S2CID   222217295.
  25. Joordens, J. C. A.; d’Errico, F.; Wesselingh, F. P.; Munro, S.; de Vos, J.; Wallinga, J.; Ankjærgaard, C.; Reimann, T.; Wijbrans, J. R.; Kuiper, K. F.; Mücher, H. J.; Coqueugniot, H.; Prié, V.; Joosten, I.; van Os, B.; Schulp, A. S.; Panuel, M.; van der Haas, V.; Lustenhouwer, W.; Reijmer, J. J. G.; Roebroeks, W. (2015). "Homo erectus at Trinil on Java used shells for tool production and engraving". Nature. 518 (7538): 228–231. Bibcode:2015Natur.518..228J. doi:10.1038/nature13962. PMID   25470048. S2CID   4461751.
  26. 1 2 3 Semáh, F.; Simanjuntak, T.; Dizon, E.; Gaillard, C.; Semáh, A.-M. (2014). "Insular Southeast Asia in the Lower Paleolithic". In Smith, C. (ed.). Encyclopedia of Global Archaeology. Springer Science+Business Media. pp. 3909, 3914. doi:10.1007/978-1-4419-0465-2_1907. ISBN   978-1-4419-0466-9. S2CID   239106990.
  27. Schick, K. D.; Toth, N. P. (1994). "Fashioning our future: the making of early stone tools". Making silent stones speak: human evolution and the dawn of technology. Simon and Schuster. pp. 132–133. ISBN   978-0-671-87538-1.
  28. 1 2 Bartstra, G.-J.; Soegondho, S.; van der Wijk, A. (1988). "Ngandong man: age and artifacts". Journal of Human Evolution . 17 (3): 332–335. doi:10.1016/0047-2484(88)90074-7.
  29. Lycett, S. J.; Bae, C. J. (2010). "The Movius Line controversy: the state of the debate". World Archaeology . 42 (4): 526–531. doi:10.1080/00438243.2010.517667. JSTOR   20799447. S2CID   2209392.
  30. Jacob, T. (1972). "The Problem of Head-Hunting and Brain-Eating among Pleistocene Men in Indonesia". Archaeology and Physical Anthropology in Oceania. 7 (2): 86–89. JSTOR   40386169.