Herto Man

Last updated

Herto Man
Homo Sapiens Idaltu.JPG
Common nameHerto Man
Species Homo sapiens
Age157±3 ka
Place discovered Bouri Formation, Ethiopia
Date discovered1997
Discovered by Tim D. White and Berhane Asfaw

Herto Man refers to human remains (Homo sapiens) discovered in 1997 from the Upper Herto member of the Bouri Formation in the Afar Triangle, Ethiopia. The remains have been dated as between 154,000 and 160,000 years old. The discovery of Herto Man was especially significant at the time, falling within a long gap in the fossil record between 300 and 100 thousand years ago and representing the oldest dated H. sapiens remains then described.

Contents

In the original description paper, these 12 (at minimum) individuals were described as falling just outside the umbrella of "anatomically modern human". Thus, Herto Man was classified into a new subspecies as "Homo sapiens idaltu" (Afar : Idaltu "elder"). It supposedly represented a transitional morph between the more archaic " H. (s.?) rhodesiensis and H. s. sapiens (that is, a stage in a chronospecies). Subsequent researchers have rejected this classification. The validity of such subspecies is difficult to justify because of the vague definitions of "species" and "subspecies", especially when discussing a chronospecies, as the exact end-morphology and start-morphology of the ancestor and descendant species are inherently unresolvable.

Herto Man produced many stone tools which can fit into the vaguely defined "Transitional Acheulean", the long-lasting cultural tradition with both characteristically Acheulean (made by archaic humans) and Middle Stone Age (made by modern humans) tools. They seem to have been butchering mainly hippo, but also bovines, in a lakeside environment. The three most complete skulls (one a 6- to 7-year-old child) bear manmade cut marks and other alterations, which could be evidence of mortuary practices like excarnation.

Research history

Location of discovery Herto, Ethiopia ; Homo sapiens idaltu 1997 discovery map.png
Location of discovery

Fossils of Herto Man were first recovered in 1997 from the Upper Herto Member of the Bouri Formation in the Middle Awash site of the Afar Triangle, Ethiopia. The materials are: BOU-VP-16/1, a nearly complete skull missing the left skullcap; BOU-VP-16/2, skull fragments; BOU-VP-16/3, a parietal bone fragment; BOU-VP-16/4, a parietal fragment; BOU-VP-16/5, a nearly complete skull of a 6- or 7-year old; BOU-VP-16/6, a right upper molar; BOU-VP-16/7, a parietal fragment; BOU-VP-16/18, parietal fragments; BOU-VP-16/42, an upper premolar; and BOU-VP-16/43, a parietal fragment. [1] Further excavation has yielded a total of 12 individuals. [2]

This region of the world is famous for yielding a series of ancient human and hominin species stretching as far back as 6 million years. [1] In 2003, using argon–argon dating, the Upper Herto Member was dated to 160 to 154 thousand years ago. [3] The Herto Man was, thus, a major fossil find, as, at the time, there was a significant gap in the human fossil record between 300 and 100 thousand years ago, obfuscating the evolution of " Homo (sapiens?) rhodesiensis " into H. s. sapiens. [1]

In a simultaneously published paper, anthropologists Tim D. White, Berhane Asfaw, David DeGusta, Henry Gilbert, Gary D. Richards, Gen Suwa, and Francis Clark Howell described the material as just barely outside what is considered an "anatomically modern human" (AMH), beyond the range of variation for any present-day human. They instead considered the earliest "AMHs" specimens from Klasies River Caves, South Africa, or Qafzeh cave, Israel. They did this by comparing BOU-VP-16/1 with the Qafzeh 6 skull, the La Ferrassie 1 skull (a male Neanderthal, H. (s.?) neanderthalensis), the Kabwe 1 skull ("H. (s.?) rhodesiensis"), and 28 present-day male skulls. Consequently, they classified Herto Man as a new palaeosubspecies of H. sapiens as "H. s. idaltu" (with the presumed male BOU-VP-16/1 as the holotype), which represents an intermediary morph between "H. (s.?) rhodesiensis" and present-day H. s. sapiens. The name comes from the local Afar language idàltu "elder". Similarly transitional specimens (at the time, not well-dated) tentatively assigned to "late archaic H. sapiens" had been reported from Ngaloba, Tanzania; Omo, Ethiopia; Eliye Springs, Kenya; and Jebel Irhoud, Morocco. [1]

Skhul 5 (above) is anatomically similar to Herto Man. Skhul skull-5.png
Skhul 5 (above) is anatomically similar to Herto Man.

In another simultaneously published paper, British physical anthropologist Chris Stringer doubted the validity of "H. s. idaltu", saying the material was similar to some Late Pleistocene Australasian specimens. [5] White et al. made note of this, but still considered Herto Man "clearly distinct". [1] In 2011, American anthropologists Kyle Lubsen and Robert Corruccini compared BOU-VP-16/1 with Skhul 5 from Es-Skhul Cave, Israel (temporally close to the Qafzeh material), and instead reported these two skulls are closely allied with each other. That is, their analysis found no support for Herto Man's position as a transitional morph, nor the nomen idaltu. [4] In 2014, anthropologists Robert McCarthy and Lynn Lucas considered a much larger sample than White et al.—using several specimens representing "archaic Homo", Neanderthal, "early modern H. s. sapiens", and Late Pleistocene H. s. sapiens—and arrived at the same conclusion as Lubsen and Corruccini. [6] Citing these two studies, in 2016, Stringer, in his review of literature regarding the derivation of H. s. sapiens, said the name idaltu, "does not seem justified." [7] The main issue of palaeosubspecies validity lies in the vague definitions of "species" and "subspecies", especially when discussing a chronospecies (an unbroken lineage which gradually changes, making the exact end-morphology and start-morphology of the ancestor and descendant species unresolvable). The original describers in 2019 still upheld the name "H. s. idaltu" because their argument, "depended largely on discrete traits," whereas Mcarthy and Lucas, "focused only on the gross cranial metrics", but also stated debating the exact taxonomic names and labels is overall not as important as understanding trends in human evolution. [8]

By the time Herto Man was discovered, based on genetic analyses and the fossil record after 120,000 years ago, it was largely agreed that modern humans H. s. sapiens evolved in Africa (recent African origin model), but it was debated if this was a continent-wide or localised process. In regard to the localised model, the antiquity of the Herto Man and the several similar specimens of presumably equal or even older age distributed across East Africa shifted the focus to that region. [5] In 2017, the Jebel Irhoud remains were dated to 315,000 years ago, making them the oldest specimens classified as H. sapiens. Because this date overlaps with "H. rhodesiensis", the Irhoud remains also demonstrate that these transitional morphs, including Herto Man, represent a rapid evolution of the sapiens face, with gradual modifications to the braincase among populations distributed across Africa, beginning as early as 300,000 years ago. [9]

Anatomy

Cast of the left side of BOU-VP-16/1 at the National Museum of Ethiopia. Teschio di Homo sapiens idaltu, del pleistocene, 200-160 mila anni fa.jpg
Cast of the left side of BOU-VP-16/1 at the National Museum of Ethiopia.

Like what could be considered an "anatomically modern human", the Herto skull has a high cranial vault (a raised forehead), an overall globular shape in side-view, and a flat face. The brain volume was about 1,450 cc. The skull is quite robust in having a projecting brow ridge, weakly curved parietal bones, and a strongly flexed occipital at the back of the skull. These traits are well within the range of variation of modern humans. Compared to the average present-day human skull, the Herto skull is notably long and has overall large dimensions, although the cheekbones are relatively weak. [1]

Culture

Technology

The Upper Herto Member is a sandy fluvial (deposited by rivers) unit recording a freshwater lake environment, and has yielded archaeologically relevant remains across a 5 km (3.1 mi) stretch. Locality BOU-A19 preserved 71 artefacts, BOU-A26 331 artefacts, and BOU-A29 194 artefacts, a total of 640. Additionally, BOU-A19B has 29 artefacts, and BOU-A19H 15 artefacts. The tool assemblage contains tools made using the Levallois technique (associated with the African "Middle Stone Age"), as well as cleavers and other bifaces (associated with the earlier Acheulean). Though bifaces and blades are rare (respectively less than 5% and 1% of the tools), it is more likely these tools were frequently made by Herto Man at a different location than that they were indeed rarely produced at all. Such an assemblage is typically labelled as the vaguely defined "Transitional Acheulean", which is found as far back as 280,000 years ago. The Herto site thus indicates the transitional phase was long-lived, and the actual derivation of what is considered "Middle Stone Age" proper was not gradual nor simple. [3]

Stone tools from Herto (left), the Omo 2 skull (middle), and the juvenile BOU-VP-16/5 skull (right) at the National Museum of Ethiopia Homo Sapiens Idaltu -fossils of skull of man and child.JPG
Stone tools from Herto (left), the Omo 2 skull (middle), and the juvenile BOU-VP-16/5 skull (right) at the National Museum of Ethiopia

Points and blades were made with obsidian, and other tools with fine-grained basalt, though a few scrapers were made with cryptocrystalline rock. Of the pool of 640, 48 flakes, blades, and points were made with the Levallois technique. The 28 bifaces include ovates, elongate ovates, triangulars, cleavers, and a pick, scraper, and biface core. All 17 handaxes were made with flakes and finished with soft hammering. Out of the 25 side scrapers, 22 were simple (only one side could scrape). There were 15 end-scrapers (only one or both of the ends could scrape), and a few were rounded off, somewhat resembling Aurignacian (40,000 years ago) end-scrapers. [3]

Both the Lower and Upper Herto Members preserve several bovine and hippo carcasses with manmade cut marks, recording a long-lasting butchering tradition with a predilection for hippo. One location records the accumulation of numerous hippo calves (newborn to a few weeks old) and adults. [3]

Mortuary practices

The adult BOU-VP-16/1 shows a weak, thin 35 mm (1.4 in) vertical cut on the bottom corner of his right parietal bone, and another smaller vertical line across the right temporal line. The adult BOU-VP-16/2 bears intense modification of 15 of his 24 associated skullcap fragments, as well as deep cut marks consistent with defleshing on his parietals, left cheekbone, frontal bone, and occipital bone. BOU-VP-16/2 also presents evidence of repetitive scraping around the circumference of the braincase (generally interpreted as a symbolic modification rather than for consumption), and the lack of fragments from the base of the skull may mean the specimen was deposited as an isolated skullcap to begin with. The juvenile BOU-VP-16/5 has deep cut marks consistent with defleshing all along the undersides of the sphenoid and temporal bones, likely after the jawbone was removed. The occipital bone and foramen magnum (the base of the skull) were broken into, and the edges were polished and smoothed off, which is similar to the mortuary practices of some Papuan tribes. These could indicate that Herto Man was symbolically preparing the dead in some mortuary ritual. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Early modern human</span> Old Stone Age Homo sapiens

Early modern human (EMH), or anatomically modern human (AMH), are terms used to distinguish Homo sapiens that are anatomically consistent with the range of phenotypes seen in contemporary humans, from extinct archaic human species. This distinction is useful especially for times and regions where anatomically modern and archaic humans co-existed, for example, in Paleolithic Europe. Among the oldest known remains of Homo sapiens are those found at the Omo-Kibish I archaeological site in south-western Ethiopia, dating to about 233,000 to 196,000 years ago, the Florisbad site in South Africa, dating to about 259,000 years ago, and the Jebel Irhoud site in Morocco, dated about 315,000 years ago.

<i>Homo heidelbergensis</i> Extinct species of archaic human

Homo heidelbergensis is an extinct species or subspecies of archaic human which existed during the Middle Pleistocene. It was subsumed as a subspecies of H. erectus in 1950 as H. e. heidelbergensis, but towards the end of the century, it was more widely classified as its own species. It is debated whether or not to constrain H. heidelbergensis to only Europe or to also include African and Asian specimens, and this is further confounded by the type specimen being a jawbone, because jawbones feature few diagnostic traits and are generally missing among Middle Pleistocene specimens. Thus, it is debated if some of these specimens could be split off into their own species or a subspecies of H. erectus. Because the classification is so disputed, the Middle Pleistocene is often called the "muddle in the middle".

Paleoanthropology or paleo-anthropology is a branch of paleontology and anthropology which seeks to understand the early development of anatomically modern humans, a process known as hominization, through the reconstruction of evolutionary kinship lines within the family Hominidae, working from biological evidence and cultural evidence.

<i>Homo rhodesiensis</i> Species of primate (fossil)

Homo rhodesiensis is the species name proposed by Arthur Smith Woodward (1921) to classify Kabwe 1, a Middle Stone Age fossil recovered from Broken Hill mine in Kabwe, Northern Rhodesia. In 2020, the skull was dated to 324,000 to 274,000 years ago. Other similar older specimens also exist.

<i>Australopithecus garhi</i> Extinct hominid from the Afar Region of Ethiopia 2.6–2.5 million years ago

Australopithecus garhi is a species of australopithecine from the Bouri Formation in the Afar Region of Ethiopia 2.6–2.5 million years ago (mya) during the Early Pleistocene. The first remains were described in 1999 based on several skeletal elements uncovered in the three years preceding. A. garhi was originally considered to have been a direct ancestor to Homo and the human line, but is now thought to have been an offshoot. Like other australopithecines, A. garhi had a brain volume of 450 cc (27 cu in); a jaw which jutted out (prognathism); relatively large molars and premolars; adaptations for both walking on two legs (bipedalism) and grasping while climbing (arboreality); and it is possible that, though unclear if, males were larger than females. One individual, presumed female based on size, may have been 140 cm tall.

<span class="mw-page-title-main">Ceprano Man</span> Prehistoric human skull cap from Italy

Ceprano Man, Argil, and Ceprano Calvarium, is a Middle Pleistocene archaic human fossil, a single skull cap (calvarium), accidentally unearthed in a highway construction project in 1994 near Ceprano in the Province of Frosinone, Italy. It was initially considered Homo cepranensis, Homo erectus, or possibly Homo antecessor; but in recent studies, most regard it either as a form of Homo heidelbergensis sharing affinities with African forms, or an early morph of Neanderthal.

The Omo remains are a collection of hominin bones discovered between 1967 and 1974 at the Omo Kibish sites near the Omo River, in Omo National Park in south-western Ethiopia. The bones were recovered by a scientific team from the Kenya National Museums directed by Richard Leakey and others. The remains from Kamoya's Hominid Site (KHS) were called Omo I and those from Paul I. Abell's Hominid Site (PHS) were called Omo II.

Human taxonomy is the classification of the human species within zoological taxonomy. The systematic genus, Homo, is designed to include both anatomically modern humans and extinct varieties of archaic humans. Current humans have been designated as subspecies Homo sapiens sapiens, differentiated, according to some, from the direct ancestor, Homo sapiens idaltu.

<span class="mw-page-title-main">Archaic humans</span> Extinct relatives of modern humans

Archaic humans is a broad category denoting all species of the genus Homo that are not Homo sapiens. Among the earliest modern human remains are those from Jebel Irhoud in Morocco, Florisbad in South Africa (259 ka),, Omo-Kibish I in southern Ethiopia ., and Apidima Cave in Southern Greece. Some examples of archaic humans include H. antecessor (1200–770 ka), H. bodoensis (1200–300 ka), H. heidelbergensis (600–200 ka), Neanderthals, H. rhodesiensis (300–125 ka) and Denisovans.

<span class="mw-page-title-main">Lantian Man</span> Subspecies of the genus Homo (fossil)

Lantian Man, Homo erectus lantianensis) is a subspecies of Homo erectus known from an almost complete mandible from Chenchiawo (陈家窝) Village discovered in 1963, and a partial skull from Gongwangling (公王岭) Village discovered in 1964, situated in Lantian County on the Loess Plateau. The former dates to about 710–684 thousand years ago, and the latter 1.65–1.59 million years ago. This makes Lantian Man the second-oldest firmly dated H. erectus beyond Africa, and the oldest in East Asia. The fossils were first described by Woo Ju-Kan in 1964, who considered the subspecies an ancestor to Peking Man.

<span class="mw-page-title-main">Middle Awash</span> UNESCO World Heritage Site in Ethiopia

The Middle Awash is a paleoanthropological research area in the northwest corner of Gabi Rasu in the Afar Region along the Awash River in Ethiopia's Afar Depression. It is a unique natural laboratory for the study of human origins and evolution and a number of fossils of the earliest hominins, particularly of the Australopithecines, as well as some of the oldest known Olduwan stone artifacts, have been found at the site—all of late Miocene, the Pliocene, and the very early Pleistocene times, that is, about 5.6 million years ago (mya) to 2.5 mya. It is broadly thought that the divergence of the lines of the earliest humans (hominins) and of chimpanzees (hominids) was completed near the beginning of that time range, or sometime between seven and five mya. However, the larger community of scientists provide several estimates for periods of divergence that imply a greater range for this event, see CHLCA: human-chimpanzee split.

<span class="mw-page-title-main">Jebel Irhoud</span> Archaeological site in Morocco

Jebel Irhoud or Adrar n Ighoud, is an archaeological site located just north of the town of Tlet Ighoud in Youssoufia Province, approximately 50 km (30 mi) south-east of the city of Safi in Morocco. It is noted for the hominin fossils that have been found there since the discovery of the site in 1960. Originally thought to be Neanderthals, the specimens have since been assigned to Homo sapiens and, as reported in 2017, have been dated to roughly 300,000 years ago.

<span class="mw-page-title-main">Bouri Formation</span> Archeological area in Afar Region, Ethiopia

The Bouri Formation is a sequence of sedimentary deposits that is the source of australopithecine and Homo fossils, artifacts, and bones of large mammals with cut marks from butchery with tools by early hominins. It is located in the Middle Awash Valley, in Ethiopia, East Africa, and is a part of the Afar Depression that has provided rich human fossil sites such as Gona and Hadar.

<span class="mw-page-title-main">Berhane Asfaw</span> Ethiopian paleontologist (born 1954)

Berhane Asfaw is an Ethiopian paleontologist of Rift Valley Research Service, who co-discovered human skeletal remains at Herto Bouri, Ethiopia later classified as Homo sapiens idaltu, proposed as an early subspecies of anatomically modern humans.

<span class="mw-page-title-main">Florisbad Skull</span> Hominin fossil

The Florisbad Skull is an important human fossil of the early Middle Stone Age, representing either late Homo heidelbergensis or early Homo sapiens. It was discovered in 1932 by T. F. Dreyer at the Florisbad site, Free State Province, South Africa.

<span class="mw-page-title-main">Daka skull</span> Homo erectus calvaria, discovered in the Ethiopian Rift Valley in 1997

The Daka calvaria, otherwise known as the Dakaskull, or specimen number BOU-VP-2/66, is a Homo erectus specimen from the Daka Member of the Bouri Formation in the Middle Awash Study Area of the Ethiopian Rift Valley.

<span class="mw-page-title-main">Tautavel Man</span> Homo erectus fossil

Tautavel Man refers to the archaic humans which—from approximately 550,000 to 400,000 years ago—inhabited the Caune de l’Arago, a limestone cave in Tautavel, France. They are generally grouped as part of a long and highly variable lineage of transitional morphs which inhabited the Middle Pleistocene of Europe, and would eventually evolve into the Neanderthals. They have been variably assigned to either H. (s.?) heidelbergensis, or as a European subspecies of H. erectus as H. e. tautavelensis. The skull is reconstructed based on the specimens Arago 21 and 47, and it is, to a degree, more characteristic of what might be considered a typical H. erectus morphology than a typical H. heidelbergensis morphology. The brain capacity is 1,166 cc. They seem to have had an overall robust skeleton. Average height may have been 166 cm.

The term archaic Homo sapiens has different meanings depending on the preferred system of taxonomy. See Human taxonomy for the question of taxonomic classification of early human varieties.

<span class="mw-page-title-main">Ndutu cranium</span> Hominin fossil

The Ndutu skull is the partial cranium of a hominin that has been assigned variously to late Homo erectus, Homo rhodesiensis, and early Homo sapiens, from the Middle Pleistocene, found at Lake Ndutu in northern Tanzania.

The Middle Awash Project is an international research expedition conducted in the Afar Region of Ethiopia with the goal of determining the origins of humanity. The project has the approval of the Ethiopian Culture Ministry and a strong commitment to developing Ethiopian archaeology, paleontology and geology research infrastructure. This project has discovered over 260 fossil specimens and over 17,000 vertebrate fossil specimens to date ranging from 200,000 to 6,000,000 years in age. Researchers have discovered the remains of four hominin species, the earliest subspecies of homo sapiens as well as stone tools. All specimens are permanently held at the National Museum of Ethiopia, where the project's laboratory work is conducted year round.

References

  1. 1 2 3 4 5 6 White, Tim D.; Asfaw, B.; DeGusta, D.; Gilbert, H.; Richards, G. D.; Suwa, G.; Howell, F. C. (2003), "Pleistocene Homo sapiens from Middle Awash, Ethiopia", Nature , 423 (6491): 742–747, Bibcode:2003Natur.423..742W, doi:10.1038/nature01669, PMID   12802332, S2CID   4432091
  2. Pearson, O. M. (2013). "Africa: The Cradle of Modern People". The Origins of Modern Humans: Biology Reconsidered. John Wiley & Sons. ISBN   978-1-118-65990-8.
  3. 1 2 3 4 5 Clark, J. D.; Beyene, Y.; WoldeGabriel, G.; et al. (2003). "Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia". Nature. 423 (6941): 747–752. Bibcode:2003Natur.423..747C. doi:10.1038/nature01670. PMID   12802333. S2CID   4312418.
  4. 1 2 Lubsen, K. D.; Corruccini, R. S. (2011). "Morphometric Analysis of the Herto Cranium (BOU-VP-16/1): Where Does It Fit?". Journal of Contemporary Anthropology. 2 (1).
  5. 1 2 Stringer, C. B. (2003). "Out of Ethiopia". Nature. 423 (6941): 693–695. Bibcode:2003Natur.423..692S. doi:10.1038/423692a. PMID   12802315. S2CID   26693109.
  6. McCarthy, R. C.; Lucas, L. (2014). "A morphometric re-assessment of BOU-VP-16/1 from Herto, Ethiopia". Journal of Human Evolution. 74: 114–117. doi:10.1016/j.jhevol.2014.05.011. PMID   25063564.
  7. Stringer, C. (2016). "The origin and evolution of Homo sapiens". Philosophical Transactions of the Royal Society B. 371 (1698): 5. doi:10.1098/rstb.2015.0237. PMC   4920294 . PMID   27298468.
  8. Sahle, Y.; Beyene, Y.; Defleur, A.; et al. (2019). "Human emergence: Perspectives from Herto, Afar rift, Ethiopia". Modern Human Origins and Dispersal. Kerns Verlag. pp. 117–121. ISBN   978-3-935751-30-8.
  9. Hublin, J.-J.; Ben-Ncer, A.; Bailey, S. E.; et al. (2017). "New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens" (PDF). Nature. 546 (7657): 289–292. Bibcode:2017Natur.546..289H. doi:10.1038/nature22336. PMID   28593953. S2CID   205255859.