N-acetylneuraminate lyase

Last updated
N-acetylneuraminate lyase
5afd.jpg
N-acetylneuramininate lyase tetramer, Aliivibrio salmonicida
Identifiers
EC no. 4.1.3.3
CAS no. 9027-60-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme N-acetylneuraminate lyase (EC 4.1.3.3) catalyzes the chemical reaction

N-acetylneuraminate N-acetyl-D-mannosamine + pyruvate

This enzyme belongs to the family of lyases, specifically the oxo-acid-lyases, which cleave carbon-carbon bonds. The systematic name of this enzyme class is N-acetylneuraminate pyruvate-lyase (N-acetyl-D-mannosamine-forming). Other names in common use include N-acetylneuraminic acid aldolase, acetylneuraminate lyase, sialic aldolase, sialic acid aldolase, sialate lyase, N-acetylneuraminic aldolase, neuraminic aldolase, N-acetylneuraminate aldolase, neuraminic acid aldolase, N-acetylneuraminic acid aldolase, neuraminate aldolase, N-acetylneuraminic lyase, N-acetylneuraminic acid lyase, NPL, NALase, NANA lyase, acetylneuraminate pyruvate-lyase, and N-acetylneuraminate pyruvate-lyase. This enzyme participates in aminosugars metabolism.

Structural studies

As of late 2007, 10 structures have been solved for this class of enzymes, with PDB accession codes 1F5Z, 1F6K, 1F6P, 1F73, 1F74, 1F7B, 1FDY, 1FDZ, 1HL2, and 1NAL.

Related Research Articles

<span class="mw-page-title-main">Sialic acid</span> Class of keto acid sugars

Sialic acids are a class of alpha-keto acid sugars with a nine-carbon backbone. The term "sialic acid" was first introduced by Swedish biochemist Gunnar Blix in 1952. The most common member of this group is N-acetylneuraminic acid found in animals and some prokaryotes.

<span class="mw-page-title-main">Neuraminic acid</span> Chemical compound

Neuraminic acid (5-amino-3,5-dideoxy-D-glycero-D-galacto-non-2-ulosonic acid) is an acidic (in particular ulosonic) amino sugar with a backbone formed by nine carbon atoms. Although 9-carbon sugars do not occur naturally, neuraminic acid may be regarded as a theoretical 9-carbon ketose in which the first link of the chain (the –CH2OH at position 1) is oxidised into a carboxyl group (–C(=O)OH), the hydroxyl group at position 3 is deoxidised (oxygen is removed from it), and the hydroxyl group at position 5 is substituted with an amino group (–NH2). Neuraminic acid may also be visualized as the product of an aldol-condensation of pyruvic acid and D-mannosamine (2-amino-2-deoxy-mannose).

<i>N</i>-Acetylmannosamine Chemical compound

N-Acetylmannosamine is a hexosamine monosaccharide. It is a neutral, stable naturally occurring compound. N-Acetylmannosamine is also known as N-Acetyl-D-mannosamine monohydrate,, N-Acetyl-D-mannosamine which can be abbreviated to ManNAc or, less commonly, NAM). ManNAc is the first committed biological precursor of N-acetylneuraminic acid. Sialic acids are the negatively charged, terminal monosaccharides of carbohydrate chains that are attached to glycoproteins and glycolipids (glycans).

In enzymology, a CMP-N-acetylneuraminate monooxygenase (EC 1.14.18.2) is an enzyme that catalyzes the chemical reaction

The enzyme 2-dehydro-3-deoxy-6-phosphogalactonate aldolase catalyzes the chemical reaction

The enzyme 2-dehydro-3-deoxy-D-pentonate aldolase catalyzes the chemical reaction

The enzyme 2-dehydro-3-deoxy-L-pentonate aldolase catalyzes the chemical reaction

<span class="mw-page-title-main">2-Dehydro-3-deoxy-phosphogluconate aldolase</span> Class of enzymes

The enzyme 2-dehydro-3-deoxy-phosphogluconate aldolase, commonly known as KDPG aldolase, catalyzes the chemical reaction

The enzyme 4-hydroxy-2-oxoglutarate aldolase catalyzes the chemical reaction

<span class="mw-page-title-main">Isocitrate lyase</span>

Isocitrate lyase, or ICL, is an enzyme in the glyoxylate cycle that catalyzes the cleavage of isocitrate to succinate and glyoxylate. Together with malate synthase, it bypasses the two decarboxylation steps of the tricarboxylic acid cycle and is used by bacteria, fungi, and plants.

<span class="mw-page-title-main">Methylisocitrate lyase</span>

The enzyme methylisocitrate lyase catalyzes the chemical reaction

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

<span class="mw-page-title-main">Malate synthase</span> Class of enzymes

In enzymology, a malate synthase (EC 2.3.3.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acetylneuraminate synthase</span> Class of enzymes

In enzymology, a N-acetylneuraminate synthase (EC 2.5.1.56) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acylneuraminate-9-phosphate synthase (EC 2.5.1.57) is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-galactoside alpha-2,6-sialyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a lactosylceramide alpha-2,3-sialyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acylmannosamine kinase</span>

In enzymology, a N-acylmannosamine kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acylneuraminate cytidylyltransferase</span>

In enzymology, a N-acylneuraminate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydrodipicolinate synthase</span> Class of enzymes

4-Hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7, dihydrodipicolinate synthase, dihydropicolinate synthetase, dihydrodipicolinic acid synthase, L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing), dapA (gene)) is an enzyme with the systematic name L-aspartate-4-semialdehyde hydro-lyase (adding pyruvate and cyclizing; (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinate-forming). This enzyme catalyses the following chemical reaction

References