Namacalathus

Last updated

Namacalathus
Temporal range: Terminal Ediacaran550–542  Ma
Namacalathus.svg
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Genus: Namacalathus
Grotzinger et al., 2000
Species:
N. hermanastes
Binomial name
Namacalathus hermanastes
Grotzinger et al., 2000

Namacalathus [lower-alpha 1] is a problematic metazoan fossil occurring in the latest Ediacaran. The first, and only described species, N. hermanastes, [lower-alpha 2] was first described in 2000 from the Nama Group of central and southern Namibia. [1]

Contents

A U–Pb zircon age from the fossiliferous rock in Namibia and Oman provides an age for the Namacalathus zone in the range from 549 to 542 Ma, which corresponds to the Late Ediacaran. Alongside Namapoikia and Cloudina , these organisms are the oldest known evidence in the fossil record of the emergence of calcified skeletal formation in metazoans, a prominent feature in animals appearing later in the Early Cambrian. Shore et al. (2021) reported the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal; they suggest it is an ancestor of Lophotrochozoan animals such as brachiopods and worms. [2]

There are only five occurrences of Namacalathus (Namibia, Canada, Oman, Siberia, Paraguay) known to date, all of which are found in association with Cloudina fossils. [1] [3] [4] [5] [6] [7]

Among the late Precambrian fossil assemblage in the Nama group, Namibia, Namacalathus far outnumber Cloudina and other poorly preserved taxa and ichnofossils found in the formation. The Nama Group fossils occur within thrombolitic facies of immense Proterozoic stromatolitic reefs. Namacalathus lived a benthic existence with its stalk attached to the sea floor by means of a holdfast, or possibly to algal mats growing on the reef surface.

Morphology

The skeleton is believed to have consisted of high-magnesium calcite. [8]

It has a unique shape with a cup on a stalk. The stalk is hollow all the way through and tapered from the bottom, ranging from 1 to 2 mm in diameter, and reaching 30 mm in length. The narrower top of the stalk connects to the cup. The cup is hollow and has a large hole in the top with the shell curving over forming a cup lip. Around the side of the globe are six or seven symmetrically arranged holes, called "windows". The wall curves inwards around each window in a formation called window lips. Each hole is slightly elongated vertically and expanded on the higher side. The size of the cup varies from two to about 25 mm, but averages 6.1 mm. The ratio of the height of the cup to the diameter is from 0.7 to 1.3. The fossil is lightly calcified, preserved as calcite crystals; its original morphology is unknown. [9] The walls in Namacalathus are only 0.1 mm thick, and often deformed by the weight of the sediment. The windows were probably originally filled with organic matter during life, but the cup was likely to be open.

Siberian specimens from the borehole Vostok 3 were designated as new species, because they have, unlike the type species N. hermanastes, a significantly smaller size. Most specimens show sections of the perforated cup, ranging from 110 to 230 μm in diameter; one specimen (with a cup 120 μm across) has a stalk (30 μm in diameter). The walls of the cup are 10 μm thick. [5]

Because the three-dimensional shape of Namacalathus is complex, and the wall is so thin, the fossils appear as a two-dimensional sections in a wide variety of shapes, including closed and open circles, irregular hexagons or heptagons, as well as heart and moon shapes. [10]

Ecology

Namacalathus was an ecological generalist, able to colonise a variety of settings in the mid- to off-ramp environs, adapting its size to suit the local conditions. [11]

Affinity

Namacalathus has typically been considered to represent a cnidarian-grade organism, due in part to its propensity for asexual reproduction by budding. Most recently, however (2015), it been interpreted as a lophophorate based on detailed observations of its skeletal construction, which point to accretionary growth in the manner of brachiopods and bryozoans. [8]

See also

Notes

  1. Nama, from the geological group where it was described, + Greek κάλαθος, kalathos, meaning "basket in the shape of a lily", or "wine goblet"
  2. Greek ἕρμα, herma, "sunken rock, reef", + νάστης, nastes, "inhabitant"

Related Research Articles

<span class="mw-page-title-main">Cambrian</span> First period of the Paleozoic Era, 539–485 million years ago

The Cambrian Period was the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux. The period was established as "Cambrian series" by Adam Sedgwick, who named it after Cambria, the Latin name for 'Cymru' (Wales), where Britain's Cambrian rocks are best exposed. Sedgwick identified the layer as part of his task, along with Roderick Murchison, to subdivide the large "Transition Series", although the two geologists disagreed for a while on the appropriate categorization. The Cambrian is unique in its unusually high proportion of lagerstätte sedimentary deposits, sites of exceptional preservation where "soft" parts of organisms are preserved as well as their more resistant shells. As a result, our understanding of the Cambrian biology surpasses that of some later periods.

<span class="mw-page-title-main">Ediacaran</span> Third and last period of the Neoproterozoic Era

The Ediacaran Period is a geological period that spans 96 million years from the end of the Cryogenian Period 635 million years ago (Mya), to the beginning of the Cambrian Period 538.8 Mya. It marks the end of the Proterozoic Eon, and the beginning of the Phanerozoic Eon. It is named after the Ediacara Hills of South Australia.

The cloudinids, an early metazoan family containing the genera Acuticocloudina, Cloudina and Conotubus, lived in the late Ediacaran period about 550 million years ago. and became extinct at the base of the Cambrian. They formed millimetre-scale conical fossils consisting of calcareous cones nested within one another; the appearance of the organism itself remains unknown. The name Cloudina honors the 20th-century geologist and paleontologist Preston Cloud.

<span class="mw-page-title-main">Stromatolite</span> Layered sedimentary structure formed by the growth of bacteria or algae

Stromatolites or stromatoliths are layered sedimentary formations (microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota. These microorganisms produce adhesive compounds that cement sand and other rocky materials to form mineral "microbial mats". In turn, these mats build up layer by layer, growing gradually over time. A stromatolite may grow to a meter or more. Although they are rare today, fossilized stromatolites provide records of ancient life on Earth.

<i>Dickinsonia</i> Extinct genus of early animals

Dickinsonia is an extinct genus of basal animal that lived during the late Ediacaran period in what is now Australia, China, India, Russia and Ukraine. The individual Dickinsonia typically resembles a bilaterally symmetrical ribbed oval. Its affinities are presently unknown; its mode of growth is consistent with a stem-group bilaterian affinity, though some have suggested that it belongs to the fungi, or even an "extinct kingdom". The discovery of cholesterol molecules in fossils of Dickinsonia lends support to the idea that Dickinsonia was an animal.

<i>Tribrachidium</i> Extinct genus of invertebrates

Tribrachidium heraldicum is a tri-radially symmetric fossil animal that lived in the late Ediacaran (Vendian) seas. In life, it was hemispherical in form. T. heraldicum is the best known member of the extinct group Trilobozoa.

<span class="mw-page-title-main">Vendobionta</span> Group of extinct creatures that were part of the Ediacaran biota

Vendobionts or Vendozoans (Vendobionta) are an extinct group of benthic beings made up of the majority of extinct creatures that were part of the Ediacaran biota. It is a hypothetical group and at the same time, it would be the oldest of the animals that populated the Earth about 580 million years ago, in the Ediacaran or Vendic period. They became extinct when the so-called Cambrian explosion appeared, with the introduction of fauna formed by more recognizable groups and more related to modern animals. It is very likely that it is not a monophyletic clade and not every genus placed in its subtaxa is an animal.

Namapoikia rietoogensis is among the earliest known animals to produce a calcareous skeleton. Known from the Ediacaran period, before the Cambrian explosion of calcifying animals, the long-lived organism grew up to a metre in diameter and resembles a colonial sponge. It was an encruster, filling vertical fissures in the reefs in which it originally grew.

<span class="mw-page-title-main">Ediacaran biota</span> All organisms of the Ediacaran Period (c. 635–538.8 million years ago)

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were composed of enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms.

<span class="mw-page-title-main">Proarticulata</span> Extinct phylum of animals

Proarticulata is a proposed phylum of extinct, bilaterally symmetrical animals known from fossils found in the Ediacaran (Vendian) marine deposits, and dates to approximately 567 to 550 million years ago. The name comes from the Greek προ = "before" and Articulata, i.e. prior to animals with true segmentation such as annelids and arthropods. This phylum was established by Mikhail A. Fedonkin in 1985 for such animals as Dickinsonia, Vendia, Cephalonega, Praecambridium and currently many other Proarticulata are described.

<i>Ernietta</i> Extinct genus of invertebrates

Ernietta is an extinct genus of Ediacaran organisms with an infaunal lifestyle. Fossil preservations and modeling indicate this organism was sessile and “sack”-shaped. It survived partly buried in substrate, with an upturned bell-shaped frill exposed above the sediment-water interface. Ernietta have been recovered from present-day Namibia, and are a part of the Ediacaran biota, a late Proterozoic radiation of multicellular organisms. They are among the earliest complex multicellular organisms and are known from the late Ediacaran. Ernietta plateauensis remains the sole species of the genus.

Evidence suggesting that a mass extinction occurred at the end of the Ediacaran period, 539 million years ago, includes:

The small shelly fauna, small shelly fossils (SSF), or early skeletal fossils (ESF) are mineralized fossils, many only a few millimetres long, with a nearly continuous record from the latest stages of the Ediacaran to the end of the Early Cambrian Period. They are very diverse, and there is no formal definition of "small shelly fauna" or "small shelly fossils". Almost all are from earlier rocks than more familiar fossils such as trilobites. Since most SSFs were preserved by being covered quickly with phosphate and this method of preservation is mainly limited to the late Ediacaran and early Cambrian periods, the animals that made them may actually have arisen earlier and persisted after this time span.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 million years ago in the Cambrian Period when practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

Ediacaran type preservation relates to the dominant preservational mode in the Ediacaran period, where Ediacaran organisms were preserved as casts on the surface of microbial mats.

<span class="mw-page-title-main">John P. Grotzinger</span>

John P. Grotzinger is the Fletcher Jones Professor of Geology at California Institute of Technology and chair of the Division of Geological and Planetary Sciences. His works primarily focus on chemical and physical interactions between life and the environment. In addition to biogeological studies done on Earth, Grotzinger is also active in research into the geology of Mars and has made contributions to NASA's Mars Exploration Program.

<span class="mw-page-title-main">Nama Group</span>

The Nama Group is a 125,000 square kilometres (48,000 sq mi) megaregional Vendian to Cambrian group of stratigraphic sequences deposited in the Nama foreland basin in central and southern Namibia. The Nama Basin is a peripheral foreland basin, and the Nama Group was deposited in two early basins, the Zaris and Witputs, to the north, while the South African Vanrhynsdorp Group was deposited in the southern third. The Nama Group is made of fluvial and shallow-water marine sediments, both siliciclastic and carbonate. La Tinta Group in Argentina is considered equivalent to Nama Group.

The Byng Formation is a geologic formation in British Columbia. It preserves fossils dating back to the Ediacaran period.

Archaeichnium is a member of the Ediacaran biota first described by Martin Glaessner in 1963. It is characterized as a tubular fossil found in the Nama group of South West Africa.

References

  1. 1 2 Grotzinger, John P.; Watters, Wesley A.; Knoll, Andrew H. (2000). "Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia". Paleobiology. 26 (3): 334–359. doi:10.1666/0094-8373(2000)026<0334:CMITSR>2.0.CO;2. S2CID   52231115.
  2. Shore, A. J.; Wood, R. A.; Butler, I. B.; Zhuravlev, A. Yu.; McMahon, S.; Curtis, A.; Bowyer, F. T. (2021). "Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion". Science Advances. 7 (1): eabf2933. Bibcode:2021SciA....7.2933S. doi: 10.1126/sciadv.abf2933 . PMC   7775780 . PMID   33523867.
  3. Amthor, Joachim E.; Grotzinger, John P.; Schröder, Stefan; Bowring, Samuel A.; Ramezani, Jahandar; Martin, Mark W.; Matter, Albert (2003). "Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman". Geology. 31 (5): 431–434. Bibcode:2003Geo....31..431A. doi:10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2.
  4. Hofmann, Hans J.; Mountjoy, Eric W. (2001). "Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils". Geology. 29 (12): 1091–1094. Bibcode:2001Geo....29.1091H. doi:10.1130/0091-7613(2001)029<1091:NCAINM>2.0.CO;2.
  5. 1 2 Kontorovich, A.E.; Varlamov, A.I.; Grazhdankin, D.V.; Karlova, G.A.; Klets, A.G.; Kontorovich, V.A.; Saraev, S.V.; Terleev, A.A.; Belyaev, S.Yu.; Varaksina, I.V.; Efimov, A.S.; Kochnev, B.B.; Nagovitsin, K.E.; Postnikov, A.A.; Filippov, Yu.F. (2008). "A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3)". Russian Geology and Geophysics. 49 (12): 932–939. Bibcode:2008RuGG...49..932K. doi:10.1016/j.rgg.2008.06.012.
  6. Kontorovich, A. E.; Sokolov, B. S.; Kontorovich, V. A.; Varlamov, A. I.; Grazhdankin, D. V.; Efimov, A. S.; Klets, A. G.; Saraev, S. V.; Terleev, A. A.; Belyaev, S. Yu.; Varaksina, I. V.; Karlova, G. A.; Kochnev, B. B.; Nagavitsin, K. E.; Postnikov, A. A.; Filippov, Yu. F. (2009). "The first section of vendian deposits in the basement complex of the West Siberian petroleum megabasin (resulting from the drilling of the Vostok-3 parametric borehole in the Eastern Tomsk region)". Doklady Earth Sciences. 425 (1): 219–222. Bibcode:2009DokES.425..219K. doi:10.1134/S1028334X09020093. S2CID   129356532.
  7. Lucas Veríssimo Warren; Fernanda Quaglio; Marcello Guimarães Simões; Claudio Gaucher; Claudio Riccomini; Daniel G. Poiré; Bernardo Tavares Freitas; Paulo C. Boggiani; Alcides Nobrega Sial (2017). "Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran" (PDF). Precambrian Research. 298: 79–87. Bibcode:2017PreR..298...79W. doi:10.1016/j.precamres.2017.05.003. hdl: 11449/163140 .
  8. 1 2 Zhuravlev, A. Yu.; Wood, R. A.; Penny, A. M. (2015). "Ediacaran skeletal metazoan interpreted as a lophophorate". Proceedings of the Royal Society B: Biological Sciences. 282 (1818): 20151860. doi:10.1098/rspb.2015.1860. PMC   4650157 . PMID   26538593.
  9. Porter, S. M. (1 June 2007). "Seawater Chemistry and Early Carbonate Biomineralization". Science. 316 (5829): 1302. Bibcode:2007Sci...316.1302P. doi:10.1126/science.1137284. PMID   17540895. S2CID   27418253.
  10. Watters, Wesley A.; Grotzinger, John P. (2001). "Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia". Paleobiology. 27 (1): 159–171. doi:10.1666/0094-8373(2001)027<0159:DROCEM>2.0.CO;2. S2CID   30276413.
  11. Penny, A. M.; Wood, R. A.; Zhuravlev, A. Yu.; Curtis, A.; Bowyer, F.; Tostevin, R. (2016). "Intraspecific variation in an Ediacaran skeletal metazoan:Namacalathusfrom the Nama Group, Namibia". Geobiology. 15 (1): 81–93. doi:10.1111/gbi.12205. PMID   27677524. S2CID   6705745.