NanoCLAMP

Last updated

In the medical field of immunology, nanoCLAMP (CLostridal Antibody Mimetic Proteins) affinity reagents are recombinant 15 kD antibody mimetic proteins selected for tight, selective and gently reversible binding to target molecules. [1] The nanoCLAMP scaffold is based on an IgG-like, thermostable carbohydrate binding module family 32 (CBM32) from a Clostridium perfringens hyaluronidase (Mu toxin). The shape of nanoCLAMPs approximates a cylinder of approximately 4 nm in length and 2.5 nm in diameter, roughly the same size as a nanobody ( PDB: 2W1Q ). nanoCLAMPs to specific targets are generated by varying the amino acid sequences and sometimes the length of three solvent exposed, adjacent loops that connect the beta strands making up the beta-sandwich fold, conferring binding affinity and specificity for the target. [1]

Contents

Properties

nanoCLAMPs are the first antibody mimetics described to be polyol-responsive, [2] meaning they release their targets upon exposure to a non-chaotropic salt and a polyol, such as propylene glycol. [1] [3] This property has been shown to be useful for purifying functional proteins and protein complexes by affinity purification. nanoCLAMPs are easily produced in the cytoplasm of E. coli , with typical yields in the range of 50 to 300 mg/L culture. Because nanoCLAMPs are devoid of cysteines, an engineered C-terminal cysteine can be used for site-directed conjugation of entities like fluorophores or resins using thiol-chemistry.

Development and applications

nanoCLAMPs were developed in the laboratories of Nectagen, Inc. nanoCLAMP phage display libraries were constructed that variabilized[ clarification needed ] 16 surface exposed amino acids in three loops with function diversities of approximately 109 variants. These libraries have been screened for binders to target proteins and peptides, typically yielding between 1 and 30 unique binders to the target. [1]

Purified nanoCLAMPs containing a single C-terminal cysteine can be easily conjugated to halo-acetyl activated agarose resins under native or denaturing conditions, and the resulting thioether bond renders the resins leach-proof. Targets can be purified to apparent homogeneity in a single-step. The polyol-responsive [2] nature of the resins allows the targets to be eluted with 0.75 M ammonium sulfate and 40% propylene glycol at pH 7.9, conditions which have been shown to preserve native structure and protein complexes. [1] [3] [4] [5] [6]

nanoCLAMPs have been produced that target green fluorescent protein (GFP), mCherry, SUMO (SMT3), NusA, avidin, NeutrAvidin, maltose-binding protein (MBP), thioredoxin 1, beta-galactosidase, SlyD, and others. Typical binding capacities of resins range from 1 to 4 mg/ml resin. Because nanoCLAMPs readily refold, nanoCLAMP resins can be regenerated multiple times using guanidinium chloride to clean the resin. [1]

Related Research Articles

Monoclonal antibody Monospecific antibody that is made by identical immune cells that are all clones of a unique parent cell

A monoclonal antibody is an antibody made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.

Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the specification of the function, structure and interactions of the protein of interest. The purification process may separate the protein and non-protein parts of the mixture, and finally separate the desired protein from all other proteins. Separation of one protein from all others is typically the most laborious aspect of protein purification. Separation steps usually exploit differences in protein size, physico-chemical properties, binding affinity and biological activity. The pure result may be termed protein isolate.

In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of biotin. Biotin binds to streptavidin and avidin with an extremely high affinity, fast on-rate, and high specificity, and these interactions are exploited in many areas of biotechnology to isolate biotinylated molecules of interest. Biotin-binding to streptavidin and avidin is resistant to extremes of heat, pH and proteolysis, making capture of biotinylated molecules possible in a wide variety of environments. Also, multiple biotin molecules can be conjugated to a protein of interest, which allows binding of multiple streptavidin, avidin or neutravidin protein molecules and increases the sensitivity of detection of the protein of interest. There is a large number of biotinylation reagents available that exploit the wide range of possible labelling methods. Due to the strong affinity between biotin and streptavidin, the purification of biotinylated proteins has been a widely used approach to identify protein-protein interactions and post-translational events such as ubiquitylation in molecular biology.

Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.

Single-chain variable fragment Fragment

A single-chain variable fragment (scFv) is not actually a fragment of an antibody, but instead is a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. This protein retains the specificity of the original immunoglobulin, despite removal of the constant regions and the introduction of the linker. The image to the right shows how this modification usually leaves the specificity unaltered.

Streptavidin

Streptavidin is a 52.8 (tetramer) kDa protein purified from the bacterium Streptomyces avidinii. Streptavidin homo-tetramers have an extraordinarily high affinity for biotin. With a dissociation constant (Kd) on the order of ≈10−14 mol/L, the binding of biotin to streptavidin is one of the strongest non-covalent interactions known in nature. Streptavidin is used extensively in molecular biology and bionanotechnology due to the streptavidin-biotin complex's resistance to organic solvents, denaturants, detergents, proteolytic enzymes, and extremes of temperature and pH.

Ion chromatography

Ion chromatography separates ions and polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including large proteins, small nucleotides, and amino acids. However, ion chromatography must be done in conditions that are one unit away from the isoelectric point of a protein.

Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or are both C-terminus and N-terminus specific. Some tags are also inserted into the coding sequence of the protein of interest; they are known as internal tags.

Avidin Type of protein

Avidin is a tetrameric biotin-binding protein produced in the oviducts of birds, reptiles and amphibians and deposited in the whites of their eggs. Dimeric members of the avidin family are also found in some bacteria. In chicken egg white, avidin makes up approximately 0.05% of total protein (approximately 1800 μg per egg). The tetrameric protein contains four identical subunits (homotetramer), each of which can bind to biotin (Vitamin B7, vitamin H) with a high degree of affinity and specificity. The dissociation constant of the avidin-biotin complex is measured to be KD ≈ 10−15 M, making it one of the strongest known non-covalent bonds.

Fast protein liquid chromatography (FPLC), is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture have different affinities for two materials, a moving fluid and a porous solid. In FPLC the mobile phase is an aqueous solution, or "buffer". The buffer flow rate is controlled by a positive-displacement pump and is normally kept constant, while the composition of the buffer can be varied by drawing fluids in different proportions from two or more external reservoirs. The stationary phase is a resin composed of beads, usually of cross-linked agarose, packed into a cylindrical glass or plastic column. FPLC resins are available in a wide range of bead sizes and surface ligands depending on the application.

Protein A

Protein A is a 42 kDa surface protein originally found in the cell wall of the bacteria Staphylococcus aureus. It is encoded by the spa gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two-component system called ArlS-ArlR. It has found use in biochemical research because of its ability to bind immunoglobulins. It is composed of five homologous Ig-binding domains that fold into a three-helix bundle. Each domain is able to bind proteins from many mammalian species, most notably IgGs. It binds the heavy chain within the Fc region of most immunoglobulins and also within the Fab region in the case of the human VH3 family. Through these interactions in serum, where IgG molecules are bound in the wrong orientation, the bacteria disrupts opsonization and phagocytosis.

Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) is a form of chromatography that is used to separate or purify biomolecules from complex mixtures. It was developed at the Swiss Federal Institute of Technology Zürich by Aumann and Morbidelli. The process consists of two to six chromatographic columns which are connected to one another in such a way that as the mixture moves through the columns the compound is purified into several fractions.

Protein A/G is a recombinant fusion protein that combines IgG binding domains of both Protein A and Protein G. Protein A/G contains four Fc binding domains from Protein A and two from Protein G, yielding a final mass of 50,460 daltons. The binding of Protein A/G is less pH-dependent than Protein A, but otherwise has the additive properties of Protein A and G.

Small modular immunopharmaceuticals, or SMIPs for short, are artificial proteins that are intended for use as pharmaceutical drugs. They are largely built from parts of antibodies (immunoglobulins), and like them have a binding site for antigens that could be used for monoclonal antibody therapy. SMIPs have similar biological half-life and, being smaller than antibodies, are reasoned to have better tissue penetration properties. They were invented by Trubion and are now being developed by Emergent BioSolutions, which acquired Trubion in 2010.

Meir Wilchek

Meir Wilchek is an Israeli biochemist. He is a professor at the Weizmann Institute of Science.

The Strep-tag® system is a method which allows the purification and detection of proteins by affinity chromatography. The Strep-tag II is a synthetic peptide consisting of eight amino acids (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys). This peptide sequence exhibits intrinsic affinity towards Strep-Tactin®, a specifically engineered streptavidin, and can be N- or C- terminally fused to recombinant proteins. By exploiting the highly specific interaction, Strep-tagged proteins can be isolated in one step from crude cell lysates. Because the Strep-tag elutes under gentle, physiological conditions it is especially suited for generation of functional proteins.

Affibody molecules are small, robust proteins engineered to bind to a large number of target proteins or peptides with high affinity, imitating monoclonal antibodies, and are therefore a member of the family of antibody mimetics. Affibody molecules are used in biochemical research and are being developed as potential new biopharmaceutical drugs. These molecules can be used for molecular recognition in diagnostic and therapeutic applications.

Antibody mimetics are organic compounds that, like antibodies, can specifically bind antigens, but that are not structurally related to antibodies. They are usually artificial peptides or proteins with a molar mass of about 3 to 20 kDa.

Affitin

Affitins are artificial proteins with the ability to selectively bind antigens. They are structurally derived from the DNA binding protein Sac7d, found in Sulfolobus acidocaldarius, a microorganism belonging to the archaeal domain. By randomizing the amino acids on the binding surface of Sac7d and subjecting the resulting protein library to rounds of ribosome display, the affinity can be directed towards various targets, such as peptides, proteins, viruses, and bacteria. Affitins are antibody mimetics and are being developed as an alternative to antibodies as tools in biotechnology. They have also been used as specific inhibitors for various enzymes. Affitins can be utilized in biochemical purification techniques, specifically in affinity chromatography. The ability of Affitins to selectively bind antigens is used to target specific proteins. Scientists have been able purify human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme using Affitin columns with a high degree of purity. These have the ability to act as specific ligands for the proteins of interest that are needed when the fusion of proteins to polypeptide tags is impossible or carries no advantage, and thus build affinity columns as is in the case of the production of biopharmaceuticals. They were immobilized on an agarose matrix and the columns had a high degree of selectivity. In addition to this, antibodies and non-immunoglobin proteins can be purified by using affitins via affinity chromatography. Due to their small size and high solubility, they can be easily produced in large amounts using bacterial expression systems.

Affimer

Affimer molecules are small proteins that bind to target molecules with similar specificity and affinity to that of antibodies. These engineered non-antibody binding proteins are designed to mimic the molecular recognition characteristics of monoclonal antibodies in different applications. In addition, these affinity reagents have been optimized to increase their stability, make them tolerant to a range of temperatures and pH, reduce their size, and to increase their expression in E.coli and mammalian cells.

References

  1. 1 2 3 4 5 6 Suderman RJ, Rice DA, Gibson SD, Strick EJ, Chao DM (Apr 17, 2017). "Development of polyol-responsive antibody mimetics for single-step protein purification". Protein Expression and Purification. 134: 114–124. doi: 10.1016/j.pep.2017.04.008 . PMID   28428153.
  2. 1 2 Burgess RR, Watson JD (June 2017). "Gentle antibody-mimetic affinity chromatography with polyol-responsive nanoCLAMPs". Protein Expression and Purification. 134: 154–155. doi:10.1016/j.pep.2017.06.002.
  3. 1 2 Thompson NE, Aronson DB, Burgess RR (1990). "Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody". J Biol Chem. 265: 7069–7077. PMID   2324114.
  4. Thompson NE, Foley KM, Stalder ES, Burgess, RR (2009). "Identification, production, and use of polyol-responsive monoclonal antibodies for immunoaffinity chromatography". Methods Enzymol. 463: 475–494. doi:10.1016/S0076-6879(09)63028-7. PMID   19892188.
  5. Thompson NE, Hager DA, Burgess RR (Aug 4, 1992). "Isolation and characterization of a polyol-responsive monoclonal antibody useful for gentle purification of Escherichia coli RNA polymerase". Biochemistry. 31: 7003–7008. doi:10.1021/bi00145a019. PMID   1637835.
  6. Thompson NE, Jensen DB, Lamberski JA, Burgess RR (2006). "Purification of protein complexes by immunoaffinity chromatography: application to transcription machinery". Genet Eng (N Y). 27: 81–100. PMID   16382873.