Nemesis (operating system)

Last updated



Nemesis
Developer University of Cambridge
Working stateDiscontinued
Latest release II / April 26, 1999 (1999-04-26)
Available in English
Platforms x86
Alpha
ARM
Default
user interface
Graphical user interface
License Nemesis Free License
Official website www.cl.cam.ac.uk/research/srg/netos/projects/archive/nemesis/

Nemesis was an operating system that was designed by the University of Cambridge, the University of Glasgow, the Swedish Institute of Computer Science and Citrix Systems.

Nemesis was conceived with multimedia uses in mind. It was designed with a small lightweight kernel, using shared libraries to perform functions that most operating systems perform in the kernel. This reduces the processing that is performed in the kernel on behalf of application processes, transferring the activity to the processes themselves and facilitating accounting for resource usage. [1]

The ISAs that Nemesis supports include x86 (Intel i486, Pentium, Pentium Pro, and Pentium II), Alpha and ARM (StrongARM SA–110). Nemesis also runs on evaluation boards (21064 and 21164).

See also

Related Research Articles

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

<span class="mw-page-title-main">Exokernel</span> Operating system kernel developed by the MIT Parallel and Distributed Operating Systems group

Exokernel is an operating system kernel developed by the MIT Parallel and Distributed Operating Systems group, and also a class of similar operating systems.

L4 is a family of second-generation microkernels, used to implement a variety of types of operating systems (OS), though mostly for Unix-like, Portable Operating System Interface (POSIX) compliant types.

In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer.

<span class="mw-page-title-main">Hyper-threading</span> Proprietary simultaneous multithreading implementation by Intel

Hyper-threading is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.

<span class="mw-page-title-main">Pentium M</span> Family of Intel microprocessors

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops. They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The first Pentium M–branded CPU, code-named Banias, was followed by Dothan. The Pentium M line was removed from the official price lists in July 2009, when the Pentium M-branded processors were succeeded by the Core-branded dual-core mobile Yonah CPU with a modified microarchitecture. It replaced the Mobile Pentium 4 processor, which suffered from power consumption and heat problems.

x86-64 Type of instruction set which is a 64-bit version of the x86 instruction set

x86-64 is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.

In computing, Physical Address Extension (PAE), sometimes referred to as Page Address Extension, is a memory management feature for the x86 architecture. PAE was first introduced by Intel in the Pentium Pro, and later by AMD in the Athlon processor. It defines a page table hierarchy of three levels (instead of two), with table entries of 64 bits each instead of 32, allowing these CPUs to directly access a physical address space larger than 4 gigabytes (232 bytes).

TRON is an open architecture real-time operating system kernel design. The project was started by Professor Dr. Ken Sakamura of the University of Tokyo in 1984. The project's goal is to create an ideal computer architecture and network, to provide for all of society's needs.

<span class="mw-page-title-main">ASCI Red</span> Supercomputer

ASCI Red was the first computer built under the Accelerated Strategic Computing Initiative (ASCI), the supercomputing initiative of the United States government created to help the maintenance of the United States nuclear arsenal after the 1992 moratorium on nuclear testing.

The Pentium F00F bug is a design flaw in the majority of Intel Pentium, Pentium MMX, and Pentium OverDrive processors. Discovered in 1997, it can result in the processor ceasing to function until the computer is physically rebooted. The bug has been circumvented through operating system updates.

<span class="mw-page-title-main">ACPI</span> Computer firmware interface standard

Advanced Configuration and Power Interface (ACPI) is an open standard that operating systems can use to discover and configure computer hardware components, to perform power management, auto configuration, and status monitoring. First released in December 1996, ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. ACPI brings power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. The specification is central to the Operating System-directed configuration and Power Management (OSPM) system. ACPI defines hardware abstraction interfaces between the device's firmware, the computer hardware components, and the operating systems.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

<span class="mw-page-title-main">Protection ring</span> Layer of protection in computer systems

In computer science, hierarchical protection domains, often called protection rings, are mechanisms to protect data and functionality from faults and malicious behavior.

The Time Stamp Counter (TSC) is a 64-bit register present on all x86 processors since the Pentium. It counts the number of CPU cycles since its reset. The instruction RDTSC returns the TSC in EDX:EAX. In x86-64 mode, RDTSC also clears the upper 32 bits of RAX and RDX. Its opcode is 0F 31. Pentium competitors such as the Cyrix 6x86 did not always have a TSC and may consider RDTSC an illegal instruction. Cyrix included a Time Stamp Counter in their MII.

<span class="mw-page-title-main">Kernel (operating system)</span> Core of a computer operating system

The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.g. CPU & cache usage, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup. It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.

In computing, the term 3 GB barrier refers to a limitation of some 32-bit operating systems running on x86 microprocessors. It prevents the operating systems from using all of 4 GiB (4 × 10243 bytes) of main memory. The exact barrier varies by motherboard and I/O device configuration, particularly the size of video RAM; it may be in the range of 2.75 GB to 3.5 GB. The barrier is not present with a 64-bit processor and 64-bit operating system, or with certain x86 hardware and an operating system such as Linux or certain versions of Windows Server and macOS that allow use of Physical Address Extension (PAE) mode on x86 to access more than 4 GiB of RAM.

<span class="mw-page-title-main">Meltdown (security vulnerability)</span> Microprocessor security vulnerability

Meltdown is one of the two original transient execution CPU vulnerabilities. Meltdown affects Intel x86 microprocessors, IBM POWER processors, and some ARM-based microprocessors. It allows a rogue process to read all memory, even when it is not authorized to do so.

References

  1. "Introduction on Nemesis". www.cl.cam.ac.uk. 5 February 2000. Retrieved 27 February 2021.