Noisy text analytics

Last updated

Noisy text analytics is a process of information extraction whose goal is to automatically extract structured or semistructured information from noisy unstructured text data. While Text analytics is a growing and mature field that has great value because of the huge amounts of data being produced, processing of noisy text is gaining in importance because a lot of common applications produce noisy text data. Noisy unstructured text data is found in informal settings such as online chat, text messages, e-mails, message boards, newsgroups, blogs, wikis and web pages. Also, text produced by processing spontaneous speech using automatic speech recognition and printed or handwritten text using optical character recognition contains processing noise. Text produced under such circumstances is typically highly noisy containing spelling errors, abbreviations, non-standard words, false starts, repetitions, missing punctuations, missing letter case information, pause filling words such as “um” and “uh” and other texting and speech disfluencies. Such text can be seen in large amounts in contact centers, chat rooms, optical character recognition (OCR) of text documents, short message service (SMS) text, etc. Documents with historical language can also be considered noisy with respect to today's knowledge about the language. Such text contains important historical, religious, ancient medical knowledge that is useful. The nature of the noisy text produced in all these contexts warrants moving beyond traditional text analysis techniques.

Contents

Techniques for noisy text analysis

Missing punctuation and the use of non-standard words can often hinder standard natural language processing tools such as part-of-speech tagging and parsing. Techniques to both learn from the noisy data and then to be able to process the noisy data are only now being developed.

Possible source of noisy text

See also

Related Research Articles

Natural language processing (NLP) is an interdisciplinary subfield of computer science and linguistics. It is primarily concerned with giving computers the ability to support and manipulate speech. It involves processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic machine learning approaches. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

<span class="mw-page-title-main">Data mining</span> Process of extracting and discovering patterns in large data sets

Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.

<span class="mw-page-title-main">Optical character recognition</span> Computer recognition of visual text

Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene photo or from subtitle text superimposed on an image.

Business intelligence (BI) comprises the strategies and technologies used by enterprises for the data analysis and management of business information. Common functions of business intelligence technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.

Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." Written resources may include websites, books, emails, reviews, and articles. High-quality information is typically obtained by devising patterns and trends by means such as statistical pattern learning. According to Hotho et al. (2005) we can distinguish between three different perspectives of text mining: information extraction, data mining, and a knowledge discovery in databases (KDD) process. Text mining usually involves the process of structuring the input text, deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interest. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling.

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction

Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data. It also entails applying data patterns toward effective decision-making. It can be valuable in areas rich with recorded information; analytics relies on the simultaneous application of statistics, computer programming, and operations research to quantify performance.

Named-entity recognition (NER) (also known as (named)entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc.

Unstructured data is information that either does not have a pre-defined data model or is not organized in a pre-defined manner. Unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well. This results in irregularities and ambiguities that make it difficult to understand using traditional programs as compared to data stored in fielded form in databases or annotated in documents.

Speech analytics is the process of analyzing recorded calls to gather customer information to improve communication and future interaction. The process is primarily used by customer contact centers to extract information buried in client interactions with an enterprise. Although speech analytics includes elements of automatic speech recognition, it is known for analyzing the topic being discussed, which is weighed against the emotional character of the speech and the amount and locations of speech versus non-speech during the interaction. Speech analytics in contact centers can be used to mine recorded customer interactions to surface the intelligence essential for building effective cost containment and customer service strategies. The technology can pinpoint cost drivers, trend analysis, identify strengths and weaknesses with processes and products, and help understand how the marketplace perceives offerings.

Intelligent character recognition (ICR) is used to extract handwritten text from image images using ICR, also referred to as intelligent OCR. It is a more sophisticated type of OCR technology that recognizes different handwriting styles and fonts to intelligently interpret data on forms and physical documents.

Teh is an Internet slang neologism most frequently used as an English article, based on a common typographical error of "the".Teh has subsequently developed grammatical usages distinct from the. It is not common in spoken or written English outside technical or leetspeak circles, but when spoken, it is pronounced, , or.

BasisTech is a software company specializing in applying artificial intelligence techniques to understanding documents and unstructured data written in different languages. It has headquarters in Somerville, Massachusetts with a subsidiary office in Tokyo. Its legal name is BasisTech LLC.

Data extraction is the act or process of retrieving data out of data sources for further data processing or data storage. The import into the intermediate extracting system is thus usually followed by data transformation and possibly the addition of metadata prior to export to another stage in the data workflow.

Noisy text is text with differences between the surface form of a coded representation of the text and the intended, correct, or original text. The noise may be due to typographic errors or colloquialisms always present in natural language and usually lowers the data quality in a way that makes the text less accessible to automated processing by computers, including natural language processing. The noise may also have been introduced through an extraction process from media other than original electronic texts.

Mobile translation is any electronic device or software application that provides audio translation. The concept includes any handheld electronic device that is specifically designed for audio translation. It also includes any machine translation service or software application for hand-held devices, including mobile telephones, Pocket PCs, and PDAs. Mobile translation provides hand-held device users with the advantage of instantaneous and non-mediated translation from one human language to another, usually against a service fee that is, nevertheless, significantly smaller than a human translator charges.

The following outline is provided as an overview of and topical guide to natural-language processing:

NetOwl is a suite of multilingual text and identity analytics products that analyze big data in the form of text data – reports, web, social media, etc. – as well as structured entity data about people, organizations, places, and things.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

References