O-Cresolphthalein

Last updated
o-Cresolphthalein
O-Kresolphthalein.svg
Names
Preferred IUPAC name
3,3-Bis(4-hydroxy-3-methylphenyl)-2-benzofuran-1(3H)-one
Identifiers
3D model (JSmol)
5-18-04-00193
ChEMBL
ChemSpider
ECHA InfoCard 100.008.985 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-881-8
PubChem CID
UNII
  • InChI=1S/C22H18O4/c1-13-11-15(7-9-19(13)23)22(16-8-10-20(24)14(2)12-16)18-6-4-3-5-17(18)21(25)26-22/h3-12,23-24H,1-2H3
    Key: CPBJMKMKNCRKQB-UHFFFAOYSA-N
  • CC1=C(C=CC(=C1)C2(C3=CC=CC=C3C(=O)O2)C4=CC(=C(C=C4)O)C)O
Properties
C22H18O4
Molar mass 346.382 g·mol−1
AppearanceWhite powder
Density 82.7 g/mL
Melting point 223 °C (433 °F; 496 K)
Boiling point 222.6 °C (432.68 °F; 495.75 K)
Insoluble
Solubility Soluble in ethanol
log P 1.975
Acidity (pKa)9.61
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Warning
H302, H312, H315, H319, H332, H335, H351
P201, P202, P261, P264, P270, P271, P280, P281, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P308+P313, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
Related compounds
Related compounds
Phenolphthalein
Thymolphthalein
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Cresolphthalein(pH indicator)
below pH 8.2above pH 9.8
8.29.8

o-Cresolphthalein is a phthalein dye used as a pH indicator in titrations. It is insoluble in water but soluble in ethanol. Its solution is colourless below pH 8.2, and purple above 9.8. Its molecular formula is C22H18O4. It is used medically to determine calcium levels in the human body, or to synthesize polyamides or polyimides.

Contents

Production

o-Cresolphthalein is not produced industrially, rather, it is commercially available. [1] To be produced, the method generally used to synthesize phthalein dyes is effective. This method is used to synthesize phenolphthalein and thymolphthalein. To begin, a 2M equivalent of a phenol or a substituted phenol should be combined with a 1M equivalent of a phthalic anhydride. [1]

Uses

The compound has uses ranging from medicine to laboratory syntheses of chemically similar compounds. o-Cresophthalein has been used to derive polyamides and polyimides, colorimetrically estimate calcium in serum, and predict amount of time to wait before blood collection after a patient receives gadodiamide.

Deriving Polyamides and Polyimides

Aromatic polyamides and polyamides are practical compounds due to their temperature resistance, electrical or insulating characteristics, and their mechanical strength. Some of the polyamides and polyimides that can be synthesized by o-Cresophthalein are polycarbonate, polyacrylate, and epoxy-resin. [2]

The diether-diamine 3,3-bis[4-(4-amino-phenoxy)-3-methylphenyl]phthalide, or BNMP, is synthesized by 12 g o-cresophthalein, 11.5 g p-chloronitrobenzene, 5.1 g anhydrous potassium carbonate, and 55 mL of DMF. The compounds should be refluxed together at 160 °C for eight hours. Once it is done and has cooled, it should be mixed with 0.3 L methanol. A precipitate should form and be vacuum filtered to obtain a solid. It should then be washed with water and dried, yielding a yellow product. It should then be recrystallized from glacial acetic acid to yield yellow needles. The product is BNMP. The reaction can go further by combining 15.5 g of BNMP with 0.18 g 10% Pd/C and 50 mL ethanol. They should be stirred at 80 °C. 7 mL of hydrazine monohydrate should be added drop by drop for one hour. The solution should then be mixed for eight hours. It should then be filtered to separated from the Pd/C and concentrated. The concentrated solution should be added to water, and a precipitate should be formed. It should then be vacuum filtered to isolate the solid, yelding 3,3-Bis[4-(4-aminophenoxy)-3-methylphenyl]pthalide, or BAMP, as a white solid. It should then be purified by water and ethanol. [2]

Colorimetric Estimation of Calcium in Serum

Calcium in a blood sample should be estimated when required medically. Calcium should be precipitated out of 0.1 mL of the blood sample serum as calcium oxalate. After that, the decomposition of the calcium oxalate should occur by heat. Then, the sample should be estimated colorimetrically by o-cresolphthalein complexone. The required liquid complexone is made by dissolving 10 mg o-cresolphthalein complexone in 50 mL alkaline borate[ clarification needed ], and then 50 mL of 0.05 N HCl are added to make the solution's pH 8.5. This method for calcium determination is efficient and effective, requiring a minimal amount of blood serum sample and a reasonable amount of time. [3]

Determination of Impact of Gadodiamide on Calcium Measurements

Gadolinium is given to patients for magnetic resonance imaging, or an MRI.It is used as a contrast agent for the exam to improve clarity of the images formed. However, it can react in the human body and have detrimental effects. Therefore, the agent should be removed. One of these gadolinium based agents is gadodiamide. Calcium in the body should be determined accurately to ensure that the Gadodiamide does not have adverse effects on the patient. There are two o-cresolphthalein methods to determine amount of calcium. The o-cresolpthalein methods are effective because it is a calcium binding dye. The gadolinium ion with a charge of +3 can be removed from gadodiamide using o-cresolphthalein. For these methods, glomerular filtration rate, or GFR, and time since gadodiamide was given should be recorded. Ultimately, these two factors and the impact of gadodiamide on calcium levels calculated by the o-cresolphthalein method helps to reveal an amount of time that patients must wait after receiving gadodiamide to have blood drawn again, or avoid pseudohypocalcemia. [4]

Safety

NFPA Diamond

NFPA-704-NFPA-Diamonds-Sign-000.png

To the left is the NFPA diamond as determined by the Safety Data Sheet, or SDS, by Fisher Scientific. [5] There is minimal risk in handling the chemical.

Related Research Articles

<span class="mw-page-title-main">Gadolinium</span> Chemical element, symbol Gd and atomic number 64

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare-earths because of their similar chemical properties.

<span class="mw-page-title-main">Uric acid</span> Organic compound

Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of purine nucleotides, and it is a normal component of urine. High blood concentrations of uric acid can lead to gout and are associated with other medical conditions, including diabetes and the formation of ammonium acid urate kidney stones.

<span class="mw-page-title-main">Phenolphthalein</span> pH indicator turning to colorless – in basic solution

Phenolphthalein ( feh-NOL(F)-thə-leen) is a chemical compound with the formula C20H14O4 and is often written as "HIn", "HPh", "phph" or simply "Ph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions. It belongs to the class of dyes known as phthalein dyes.

Plate readers, also known as microplate readers or microplate photometers, are instruments which are used to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations. Sample reactions can be assayed in 1-1536 well format microtiter plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well with a typical reaction volume between 100 and 200 µL per well. Higher density microplates are typically used for screening applications, when throughput and assay cost per sample become critical parameters, with a typical assay volume between 5 and 50 µL per well. Common detection modes for microplate assays are absorbance, fluorescence intensity, luminescence, time-resolved fluorescence, and fluorescence polarization.

<span class="mw-page-title-main">Polyimide</span> Class of polymers

Polyimide is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, such as high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.

<span class="mw-page-title-main">Phenol red</span> Chemical compound

Phenol red is a pH indicator frequently used in cell biology laboratories.

Polyamide-imides are either thermosetting or thermoplastic, amorphous polymers that have exceptional mechanical, thermal and chemical resistant properties. Polyamide-imides are used extensively as wire coatings in making magnet wire. They are prepared from isocyanates and TMA in N-methyl-2-pyrrolidone (NMP). A prominent distributor of polyamide-imides is Solvay Specialty Polymers, which uses the trademark Torlon.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Organic peroxides</span> Organic compounds of the form R–O–O–R’

In organic chemistry, organic peroxides are organic compounds containing the peroxide functional group. If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. The O−O bond of peroxides easily breaks, producing free radicals of the form RO. Thus, organic peroxides are useful as initiators for some types of polymerization, such as the acrylic, unsaturated polyester, and vinyl ester resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can explosively combust. Organic peroxides, like their inorganic counterparts, are often powerful bleaching agents.

<span class="mw-page-title-main">Benzidine</span> Chemical compound

Benzidine (trivial name), also called 1,1'-biphenyl-4,4'-diamine (systematic name), is an organic compound with the formula (C6H4NH2)2. It is an aromatic amine. It is a component of a test for cyanide. Related derivatives are used in the production of dyes. Benzidine has been linked to bladder and pancreatic cancer.

<span class="mw-page-title-main">3,3',5,5'-Tetramethylbenzidine</span> Chemical compound

3,3′,5,5′-Tetramethylbenzidine or TMB is a chromogenic substrate used in staining procedures in immunohistochemistry as well as being a visualising reagent used in enzyme-linked immunosorbent assays (ELISA). TMB is a white solid that forms a pale blue-green liquid in solution with ethyl acetate. TMB is degraded by sunlight and by fluorescent lights. Used to detect hematuria as it turns blue in contact with hemoglobin.

In medicine, the urea-to-creatinine ratio (UCR), known in the United States as BUN-to-creatinine ratio, is the ratio of the blood levels of urea (BUN) (mmol/L) and creatinine (Cr) (μmol/L). BUN only reflects the nitrogen content of urea and urea measurement reflects the whole of the molecule, urea is just over twice BUN. In the United States, both quantities are given in mg/dL The ratio may be used to determine the cause of acute kidney injury or dehydration.

β-Hydroxybutyric acid Chemical compound

β-Hydroxybutyric acid, also known as 3-hydroxybutyric acid or BHB, is an organic compound and a beta hydroxy acid with the chemical formula CH3CH(OH)CH2CO2H; its conjugate base is β-hydroxybutyrate, also known as 3-hydroxybutyrate. β-Hydroxybutyric acid is a chiral compound with two enantiomers: D-β-hydroxybutyric acid and L-β-hydroxybutyric acid. Its oxidized and polymeric derivatives occur widely in nature. In humans, D-β-hydroxybutyric acid is one of two primary endogenous agonists of hydroxycarboxylic acid receptor 2 (HCA2), a Gi/o-coupled G protein-coupled receptor (GPCR).

Bittern, or nigari, is the salt solution formed when halite precipitates from seawater or brines. Bitterns contain magnesium, calcium, and potassium ions as well as chloride, sulfate, iodide, and other ions.

<span class="mw-page-title-main">Gallium nitrate</span> Chemical compound

Gallium nitrate (brand name Ganite) is the gallium salt of nitric acid with the chemical formula Ga(NO3)3. It is a drug used to treat symptomatic hypercalcemia secondary to cancer. It works by preventing the breakdown of bone through the inhibition of osteoclast activity, thus lowering the amount of free calcium in the blood. Gallium nitrate is also used to synthesize other gallium compounds.

In polymer chemistry, in situ polymerization is a preparation method that occurs "in the polymerization mixture" and is used to develop polymer nanocomposites from nanoparticles. There are numerous unstable oligomers (molecules) which must be synthesized in situ for use in various processes. The in situ polymerization process consists of an initiation step followed by a series of polymerization steps, which results in the formation of a hybrid between polymer molecules and nanoparticles. Nanoparticles are initially spread out in a liquid monomer or a precursor of relatively low molecular weight. Upon the formation of a homogeneous mixture, initiation of the polymerization reaction is carried out by addition of an adequate initiator, which is exposed to a source of heat, radiation, etc. After the polymerization mechanism is completed, a nanocomposite is produced, which consists of polymer molecules bound to nanoparticles.

Colorimetric analysis is a method of determining the concentration of a chemical element or chemical compound in a solution with the aid of a color reagent. It is applicable to both organic compounds and inorganic compounds and may be used with or without an enzymatic stage. The method is widely used in medical laboratories and for industrial purposes, e.g. the analysis of water samples in connection with industrial water treatment.

<span class="mw-page-title-main">Jaffe reaction</span> Colorimetric method used in clinical chemistry

The Jaffe reaction is a colorimetric method used in clinical chemistry to determine creatinine levels in blood and urine. In 1886, Max Jaffe (1841–1911) wrote about its basic principles in the paper Über den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins in which he described the properties of creatinine and picric acid in an alkaline solution. The color change that occurred was directly proportional to the concentration of creatinine, however he also noted that several other organic compounds induced similar reactions. In the early 20th century, Otto Folin adapted Jaffe's research into a clinical procedure. The Jaffe reaction, despite its nonspecificity for creatinine, is still widely employed as the method of choice for creatinine testing due to its speed, adaptability in automated analysis, and cost-effectiveness, and is the oldest methodology continued to be used in the medical laboratory. It is this nonspecificity that has motivated the development of new reference methods for creatinine analysis into the 21st century.

<span class="mw-page-title-main">Cardo polymer</span>

Cardo polymers are a sub group of polymers where ring structures are pendent to the polymer backbone. The backbone carbons bonded to the pendent ring structures are quaternary centers. As such, the cyclic side group lies perpendicular to the plane of the extended polymer chain. These side rings are bulky structures which sterically hinder rotation of the backbone bonds; they also disrupt chain packing and thus create greater free volume than found in conventional polymer structures. The rotational restrictions placed on the polymer backbone increase the value of the characteristic ratio, leading to what is referred to as a "rigid" or "stiff" backbone. The sterically driven large rotational potential produces a high glass transition temperature and the disrupted packing yields comparatively high values for gas and other small molecule solubilities in these polymers. Because of these physical effects, recent advances in membranes used for gas separation have used cardo polymers.

A chemical sensor array is a sensor architecture with multiple sensor components that create a pattern for analyte detection from the additive responses of individual sensor components. There exist several types of chemical sensor arrays including electronic, optical, acoustic wave, and potentiometric devices. These chemical sensor arrays can employ multiple sensor types that are cross-reactive or tuned to sense specific analytes.

References

  1. 1 2 Liu, Zhihong; Liu, Junfeng; Chen, Tianlu (2005). "Facile synthesis, characterization, and potential applications of two kinds of polymeric pH indicators: Phenolphthalein formaldehyde and o-cresolphthalein formaldehyde". Journal of Polymer Science Part A: Polymer Chemistry. 43 (5): 1019–1027. Bibcode:2005JPoSA..43.1019L. doi:10.1002/pola.20576. ISSN   1099-0518.
  2. 1 2 Yang, Chin-Ping; Tang, Sheng-Yuan (1999). "Syntheses and properties of organosoluble polyamides and polyimides based on the diamine 3,3-bis[4-(4-aminophenoxy)-3-methylphenyl]phthalide derived from o-cresolphthalein". Journal of Polymer Science Part A: Polymer Chemistry. 37 (4): 455–464. Bibcode:1999JPoSA..37..455Y. doi:10.1002/(SICI)1099-0518(19990215)37:4<455::AID-POLA9>3.0.CO;2-3. ISSN   1099-0518.
  3. Stern, J.; Lewis, W.H.P. (1957). "The colorimetric estimation of calcium in serum with o-cresolphthalein complexone". Clinica Chimica Acta. 2 (6): 576–580. doi:10.1016/0009-8981(57)90063-3. PMID   13500593.
  4. Kang, Hyunseok Peter; Scott, Mitchell G; Joe, Bonnie N; Narra, Vamsi; Heiken, Jay; Parvin, Curtis A (2004-04-01). "Model for Predicting the Impact of Gadolinium on Plasma Calcium Measured by the o-Cresolphthalein Method". Clinical Chemistry. 50 (4): 741–746. doi: 10.1373/clinchem.2003.028886 . ISSN   0009-9147. PMID   14962999.
  5. Sabnis, Ram W. (2009-11-18). "A facile synthesis of phthalein indicator dyes". Tetrahedron Letters. 50 (46): 6261–6263. doi:10.1016/j.tetlet.2009.09.007. ISSN   0040-4039.