Perkinsus marinus

Last updated

Perkinsus marinus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Perkinsozoa
Class: Perkinsea
Order: Perkinsida
Family: Perkinsidae
Genus: Perkinsus
Species:
P. marinus
Binomial name
Perkinsus marinus
(Mackin, Owen & Collier) Levine 1978
Synonyms
  • Labyrinthomyxa marina1966
  • Dermocystidium marinumJ.G. Mackin et al., 1950

Perkinsus marinus is a species of alveolate belonging to the phylum Perkinsozoa. [1] It is similar to a dinoflagellate. [1] [2] It is known as a prevalent pathogen of oysters, causing massive mortality in oyster populations. The disease it causes is known as dermo or perkinsosis, and is characterized by the degradation of oyster tissues. [3] The genome of this species has been sequenced. [4]

Contents

The species originally was named Dermocystidium marinum by Mackin, Owen and Collier in 1950. [5]

Taxonomy

P. marinus is a protozoan of the protist superphylum Alveolata, the alveolates. Its phylum, Perkinsozoa, is a relatively new taxon positioned between the dinoflagellates and the Apicomplexa, and is probably more closely related to the former. [3] P. marinus is the type species of the genus Perkinsus , which was erected in 1978. When first identified in 1950, it was mistaken for a fungus. [6]

Description and life cycle

The protist is about 2 to 4 μm long. [7] The zoospore has two flagella, which it uses to swim in its marine habitat. It is ingested by its mollusc host, which is often an oyster of the genus Crassostrea . It then becomes a trophozoite, which proliferates in the tissues of the host. P. marinus often infests the hemocytes, cells in the blood of the host, analogous to malaria in vertebrates. [8] It is also often seen in the cells of the intestine, connective tissues, digestive glands, and gills. [3] Inside the cell, the trophozoite produces a vacuole that displaces the cell nucleus. The infested cell is referred to as a signet ring cell, because it is spherical and filled with the rounded vacuole, and resembles a signet ring. The mature trophozoite undergoes binary fission and up to 16 immature trophozoites are produced. These stay in the host animal and infest its tissues, or are released into the water in the feces or from a dead host. Trophozoites in the water mature and release flagellated zoospores. [8]

The most economically important host is the eastern oyster (Crassostrea virginica). The parasite is also common in C. corteziensis , and the species C. rhizophorae , C. gasar , and C. brasiliana are probably susceptible. Magallana gigas and M. ariakensis are experimentally susceptible, but may be more resistant. Certain clams such as Mya arenaria and Macoma balthica can be infected in experimental situations. In the laboratory, the sea snail Boonea impressa can be infected and then pass the parasite to an oyster host. [3]

Oyster anatomy Oyster anatomy.jpg
Oyster anatomy

Pathology

Perkinsosis or "dermo" is the disease condition of the oyster. The name "dermo" was coined when the protist was named Dermocystidium marinum, and it is still commonly used. [7] Infested cells are destroyed by the reproducing protist, and many trophozoites are released into the tissues of the host, or into its bloodstream. There, they infest more cells or are excreted or released when the host dies and disintegrates. The infected oyster becomes stressed, its tissues are pale in color, its gamete production is retarded, its growth slows, it becomes emaciated, its mantle shrivels and pulls away from the shell, and it may develop pockets of pus-like fluid. [3] Lysis of tissues and blockage of blood vessels causes fatality, but many oysters can persist up to 3 years with active infections. [7]

Distribution

The protist occurs along the North American coast from Maine to Florida to the Yucatán Peninsula of Mexico. Dermo epizootic outbreaks occurred in the Gulf of Mexico in the 1940s. Periodic outbreaks in the Chesapeake Bay have caused extensive oyster mortality. Significant disease has occurred in Delaware Bay, Long Island Sound, and other parts of the coast of the northeastern United States. [7]

Oyster farming operations have been disrupted in some areas, particularly in Mexico. [3]

Management

The prevalence of the protist and the disease are influenced by environmental factors such as temperature, salinity, and food availability to the hosts. Oysters exposed to environmental pollutants such as N-Nitrosodimethylamine, and tributyltins experience more severe disease. [3] At higher temperatures, the chemical defenses of the oyster, particularly its lysozymes, are reduced; infections are more common and more severe in the summer. [9] Warmer winter ocean temperatures also promote outbreaks. [10]

While laboratory studies of certain antibiotics have been promising, no methods of eradication are effective, so prevention is important. Oysters from populations or farms that have experienced disease should not be moved to areas without infestations, because the protist is easily introduced and transmitted. In aquaculture, efforts to locate and breed more resistant strains of oysters are ongoing. [3] Infested seed oysters should not be planted in oyster beds, and in disease-ridden areas, the oysters should be removed and the site allowed to lie fallow to reduce the protist load. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Apicomplexa</span> Phylum of parasitic alveolates

The Apicomplexa are a large phylum of mainly parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of non-photosynthetic plastid called an apicoplast, and an apical complex structure. The organelle is an adaptation that the apicomplexan applies in penetration of a host cell.

<i>Entamoeba histolytica</i> Anaerobic parasitic protist

Entamoeba histolytica is an anaerobic parasitic amoebozoan, part of the genus Entamoeba. Predominantly infecting humans and other primates causing amoebiasis, E. histolytica is estimated to infect about 35-50 million people worldwide. E. histolytica infection is estimated to kill more than 55,000 people each year. Previously, it was thought that 10% of the world population was infected, but these figures predate the recognition that at least 90% of these infections were due to a second species, E. dispar. Mammals such as dogs and cats can become infected transiently, but are not thought to contribute significantly to transmission.

<span class="mw-page-title-main">Eastern oyster</span> Species of bivalve

The eastern oyster —also called the Atlantic oyster, American oyster, or East Coast oyster—is a species of true oyster native to eastern North and South America. Other names in local or culinary use include the Wellfleet oyster, Virginia oyster, Malpeque oyster, Blue Pointoyster, Chesapeake Bay oyster, and Apalachicola oyster. C. virginica ranges from northern New Brunswick south through parts of the West Indies to Venezuela. It is farmed in all of the Maritime provinces of Canada and all Eastern Seaboard and Gulf states of the United States, as well as Puget Sound, Washington, where it is known as the Totten Inlet Virginica. It was introduced to the Hawaiian Islands in the 19th century and is common in Pearl Harbor.

Perkinsus is a genus of alveolates in the phylum Perkinsozoa. The genus was erected in 1978 to better treat its type species, Perkinsus marinus, known formerly as Dermocystidium marinum. These are parasitic protozoans that infect molluscs, at least some of which cause disease and mass mortality. P. marinus is the most notorious, causing the disease perkinsosis, or dermo, in wild and farmed oysters.

<span class="mw-page-title-main">Oyster farming</span> Commercial growing of oysters

Oyster farming is an aquaculture practice in which oysters are bred and raised mainly for their pearls, shells and inner organ tissue, which is eaten. Oyster farming was practiced by the ancient Romans as early as the 1st century BC on the Italian peninsula and later in Britain for export to Rome. The French oyster industry has relied on aquacultured oysters since the late 18th century.

<span class="mw-page-title-main">Powdery scab</span> Disease of potatoes

Powdery scab is a disease of potato tubers. It is caused by the cercozoan Spongospora subterranea f. sp. subterranea and is widespread in potato growing countries. Symptoms of powdery scab include small lesions in the early stages of the disease, progressing to raised pustules containing a powdery mass. These can eventually rupture within the tuber periderm. The powdery pustules contain resting spores that release anisokont zoospores to infect the root hairs of potatoes or tomatoes. Powdery scab is a cosmetic defect on tubers, which can result in the rejection of these potatoes. Potatoes which have been infected can be peeled to remove the infected skin and the remaining inside of the potato can be cooked and eaten.

Dermocystidium is a genus of cyst-forming, eukaryotic fish parasites, the causative agents of dermocystidiosis.

Haplosporidium nelsoni is a pathogen of oysters that originally caused oyster populations to experience high mortality rates in the 1950s, and still is quite prevalent today. The disease caused by H. nelsoni is also known as MSX. MSX is thought to have been introduced by experimental transfers of the Pacific oyster, which is resistant to this disease.

<i>Colpodella</i> Genus of single-celled organisms

Colpodella is a genus of alveolates comprising 5 species, and two further possible species: They share all the synapomorphies of apicomplexans, but are free-living, rather than parasitic. Many members of this genus were previously assigned to a different genus - Spiromonas.

<span class="mw-page-title-main">Myzozoa</span> Group of single-celled organisms

Myzozoa is a grouping of specific phyla within Alveolata, that either feed through myzocytosis, or were ancestrally capable of feeding through myzocytosis.

Haplosporidium is a genus under order Haplosporida.

Syndinium is a cosmopolitan genus of parasitic dinoflagellates that infest and kill marine planktonic species of copepods and radiolarians. Syndinium belongs to order Syndiniales, a candidate for the uncultured group I and II marine alveolates. The lifecycle of Syndinium is not well understood beyond the parasitic and zoospore stages.

Urastoma cyprinae is a turbellarian that infects the gills of numerous species. It has been reported as free-living organism in marine mud and on algae. Urastoma cyprinae is reported as an opportunistic mantle inhabitant on the gills of various bivalve species, including the clams Tridacna maxima and Tridacna gigas, and the mussels Mytilus edulis and Mytilus galloprovincialis. They are also found throughout the gill surface of C. virginica and is attracted by mucus that coats the gills of oysters. However, the nature of the host-parasite relationship remains unknown.

Parvilucifera is a genus of marine alveolates that parasitise dinoflagellates. Parvilucifera is a parasitic genus described in 1999 by Norén et al. It is classified perkinsozoa in the supraphylum of Alveolates. This taxon serves as a sister taxon to the dinoflagellates and apicomplexans. Thus far, five species have been described in this taxon, which include: P.infectans, P.sinerae, P.corolla, P.rostrata, and P.prorocentri. The genus Parvilucifera is morphologically characterized by flagellated zoospore. The life cycle of the species in this genus consist of free-living zoospores, an intracellular stage called trophont, and asexual division to form resting sporangium inside host cell. This taxon has gained more interest in research due to its potential significance in terms of negative regulation for dinoflagellates blooms, that have proved harmful for algal species, humans, and the shellfish industry.

Perkinsidae is a family of alveolates in the phylum Perkinsozoa, a sister group to the dinoflagellates.

<i>Trichomonas tenax</i> Species of single-celled organism

Trichomonas tenax, or oral trichomonas, is a species of Trichomonas commonly found in the oral cavity of humans. Routine hygiene is generally not sufficient to eliminate the parasite, hence its Latin name, meaning "tenacious". The parasite is frequently encountered in periodontal infections, affecting more than 50% of the population in some areas, but it is usually considered insignificant. T. tenax is generally not found on the gums of healthy patients. It is known to play a pathogenic role in necrotizing ulcerative gingivitis and necrotizing ulcerative periodontitis, worsening preexisting periodontal disease. This parasite is also implicated in some chronic lung diseases; in such cases, removal of the parasite is sufficient to allow recovery.

Coccidinium is a genus of parasitic syndinian dinoflagellates that infect the nucleus and cytoplasm of other marine dinoflagellates. Coccidinium, along with two other dinoflagellate genera, Amoebophyra and Duboscquella, contain species that are the primary endoparasites of marine dinoflagellates. While numerous studies have been conducted on the genus Amoebophyra, specifically Amoebophyra ceratii, little is known about Coccidinium. These microscopic organisms have gone relatively unstudied after the initial observations of Édouard Chatton and Berthe Biecheler in 1934 and 1936.

Nematopsis (Nee-mah-top-cis) is a genus gregarine Apicomplexan of the family Porosporidae. It is an aquatic parasite of crustaceans with a molluscan intermediate host. Nematopsis has been distinguished from the similar genus Porospora by its resistant and encapsulated oocyst. Little molecular biology has been performed on the members of the Nemaptosis and species are described based on molluscan and crustacean hosts as well as oocyst structure. A total of 38 species have been described and are found all over the world.

Ichthyodinium is a monotypic genus of dinoflagellates in the family Dinophysaceae. Ichthyodinium chabelardi (/ɪkθioʊˈdɪniəm/) is currently the sole described species of the genus.

<i>Maullinia</i> Genus of intracellular parasites

Maullinia is a genus of intracellular, phytomyxid parasites found across the Southern Hemisphere though primarily in Chile, The Prince Edward Islands, South Africa, Australia, and New Zealand. These parasites infiltrate the cells of their brown algal hosts via cytoplasmic extensions called plasmodia that divide synchronously, becoming increasingly multi-nucleate and engulfing the host cell organelles as they grow. Eventually, as the plasmodia fill the entire cell volume, the host cells become hypertrophied and grow to 3- 4x their original size, showing up as swollen appendages or galls on the host tissue at a macroscopic level. These swollen regions will burst alongside the mature Maullinia plasmodia, releasing biflagellated zoospores to the inter- and extracellular space to disperse the infection further. Zoospores can come from sporangial plasmodia, as in M. ectocarpii, or from resting spores, as in M. braseltonii.

References

  1. 1 2 Joseph, S., et al. (2010). The alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 11(1), 228.
  2. Saldarriaga, J. F., et al. (2003). Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. International Journal of Systematic and Evolutionary Microbiology 53(1), 355-65.
  3. 1 2 3 4 5 6 7 8 Bower, S. M. Synopsis of infectious diseases and parasites of commercially exploited shellfish: Perkinsus marinus ("dermo" disease) of oysters. Fisheries and Oceans Canada. 2011.
  4. Perkinsus marinus Genome Report. National Center for Biotechnology Information.
  5. Mackin, J.G.; Owen, H.M.; Collier, A. (1950). "Preliminary Note on the Occurrence of a New Protistan Parasite, Dermocystidium marinum n. sp. in Crassostrea virginica (Gmelin)". Science. 111 (2883): 328–329. doi:10.1126/science.111.2883.328. PMID   17791737.
  6. Villalba, A., et al. (2004). Perkinsosis in molluscs: a review. Aquatic Living Resources 17(04), 411-32.
  7. 1 2 3 4 5 Sunila, I. Dermo Disease. Oyster and Clam Diseases. Connecticut Department of Agriculture.
  8. 1 2 Petty, D. Perkinsus Infections of Bivalve Molluscs. FA178. Fisheries and Aquatic Sciences. Florida Cooperative Extension Service. University of Florida IFAS. Published 2010.
  9. Chu, F. L. E. and J. F. La Peyre. (1993). Perkinsus marinus susceptibility and defense-related activities in eastern oysters Crassostrea virginica: temperature effects. Diseases of Aquatic Organisms 16, 223-34.
  10. Cook, T., et al. (1998). The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (dermo) disease epizootics in oysters. Estuarine, Coastal and Shelf Science 46(4), 587-97.

Further reading