N-Nitrosodimethylamine

Last updated
N-Nitrosodimethylamine
NDMA.svg
NDMA sample.jpg
N-Nitrosodimethylamine Ball and Stick.png
N-Nitrosodimethylamine Space Fill.png
Names
Preferred IUPAC name
N,N-Dimethylnitrous amide
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.500 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-549-8
KEGG
MeSH Dimethylnitrosamine
PubChem CID
RTECS number
  • IQ0525000
UNII
UN number 3382
  • InChI=1S/C2H6N2O/c1-4(2)3-5/h1-2H3 X mark.svgN
    Key: UMFJAHHVKNCGLG-UHFFFAOYSA-N X mark.svgN
  • CN(C)N=O
Properties
C2H6N2O
Molar mass 74.083 g·mol−1
AppearanceYellow oil [1]
Odor faint, characteristic [1]
Density 1.005 g/mL
Boiling point 153.1 °C; 307.5 °F; 426.2 K
290 mg/ml (at 20 °C)
log P −0.496
Vapor pressure 700 Pa (at 20 °C)
1.437
Thermochemistry
1.65 MJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Known carcinogen, [1] extremely toxic
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H301, H330, H350, H372, H411
P260, P273, P284, P301+P310, P310
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
4
2
0
Flash point 61.0 °C (141.8 °F; 334.1 K)
Lethal dose or concentration (LD, LC):
37.0 mg/kg (oral, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
OSHA-Regulated Carcinogen [1]
REL (Recommended)
Ca [1]
IDLH (Immediate danger)
Ca [N.D.] [1]
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

N-Nitrosodimethylamine (NDMA), also known as dimethylnitrosamine (DMN), is an organic compound with the formula (CH3)2NNO. It is one of the simplest members of a large class of nitrosamines. It is a volatile yellow oil. NDMA has attracted wide attention as being highly hepatotoxic and a known carcinogen in laboratory animals. [2]

Contents

Occurrence

Drinking water

Of more general concern, NDMA can be produced by water treatment by chlorination or chloramination. The question is the level at which it is produced. In the U.S. state of California, the allowable level is 10 nanograms/liter. The Canadian province of Ontario set the standard at 9 ng/L. The potential problem is greater for recycled water that can contain dimethylamine. [3] Further, NDMA can form or be leached during treatment of water by anion exchange resins. [4]

Contamination of drinking water with NDMA is of particular concern due to the minute concentrations at which it is harmful, the difficulty in detecting it at these concentrations, and to the difficulty in removing it from drinking water. It does not readily biodegrade, adsorb, or volatilize.[ citation needed ] As such, it cannot be removed by activated carbon and travels easily through soils.

Relatively high levels of UV radiation in the 200 to 260  nm range breaks the N–N bond. Thus, it can be used to degrade NDMA. Additionally, reverse osmosis removes approximately 50% of NDMA. [5]

Cured meat

NDMA is found at low levels in numerous items of human consumption, including cured meat, fish, beer, as well as during use of tobacco products and the inhalation of tobacco smoke. [4] [6]

Rocket fuel

Unsymmetrical dimethylhydrazine, a rocket fuel, is a highly effective precursor to NDMA:

(CH3)2NNH2 + 2 O → (CH3)2NNO + H2O

Groundwater near rocket launch sites often has high levels of NDMA. [5]

Regulation

United States

The United States Environmental Protection Agency (EPA) determined that the maximal admissible concentration of NDMA in drinking water is 7 ng/L. [7] As of July 2020, the EPA has not set a regulatory maximal contaminant level (MCL) for drinking water. At high doses, it is a "potent hepatotoxin that can cause fibrosis of the liver" in rats. [8] The induction of liver tumors in rats after chronic exposure to low doses is well documented. [9] Its toxic effects on humans are inferred from animal experiments, but not well-established experimentally.

It is classified as an extremely hazardous substance in the United States, as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities that produce, store, or use it in significant quantities. [10]

European Union

In July 2020, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) issued an opinion requiring companies to take measures to limit the presence of nitrosamines in human medicines as far as possible and to ensure levels of these impurities do not exceed set limits. [11] [12] Nitrosamines are classified as probable human carcinogens (substances that could cause cancer). The limits for nitrosamines in medicines have been set using internationally agreed standards (ICH M7(R1)) based on lifetime exposure. [11] Generally, people should not be exposed to a lifetime risk of cancer exceeding 1 in 100,000 from nitrosamines in their medicines. [11] EU regulators first became aware of nitrosamines in medicines in mid-2018, and took regulatory actions, including recalling medicines and stopping the use of active substances from certain manufacturers. [11] A subsequent CHMP review of sartan blood-pressure medicines in 2019, led to new requirements for the manufacture of sartans, while its 2020 review of ranitidine recommended an EU-wide suspension of ranitidine medicines. [11]

Chemistry

The C2N2O core of NDMA is planar, as established by X-ray crystallography. The central nitrogen is bound to two methyl groups and the NO group with bond angles of 120°. The N-N and N-O distances are 1.32 and 1.26 Å, respectively. [13]

NDMA forms from a variety of dimethylamine-containing compounds, e.g. hydrolysis of dimethylformamide. Dimethylamine is susceptible to oxidation to unsymmetrical dimethylhydrazine, which air-oxidizes to NDMA. [14]

In the laboratory, NDMA can be synthesised by the reaction of nitrous acid with dimethylamine:

HONO + (CH3)2NH → (CH3)2NNO + H2O

The mechanism of its carcinogenicity involves metabolic activation steps resulting in the formation of diazomethane, an alkylating agent. [2]

Metabolic activation of NDMA relevant to its cancer-causation. Ndma activ.svg
Metabolic activation of NDMA relevant to its cancer-causation.

As a poison

Several incidents in which NDMA was used intentionally to poison another person have garnered media attention. In 1978, a teacher in Ulm, Germany, was sentenced to life in prison for trying to murder his wife by poisoning jam with NDMA and feeding it to her. Both the wife and the teacher later died from liver failure. [15] [16]

In 1978, Steven Roy Harper spiked lemonade with NDMA at the Johnson family home in Omaha, Nebraska. The incident resulted in the deaths of 30-year-old Duane Johnson and 11-month-old Chad Shelton. For his crime, Harper was sentenced to death, but committed suicide in prison before his execution could be carried out. [17]

In the 2013 Fudan poisoning case, Huang Yang, a postgraduate medical student at Fudan University, was the victim of a poisoning in Shanghai, China. Huang was poisoned by his roommate Lin Senhao, who had placed NDMA into the water cooler in their dormitory. Lin claimed that he only did this as an April Fool's joke. He received a death sentence, and was executed in 2015. [18]

In 2018, NDMA was used in an attempted poisoning at Queen's University in Kingston, Canada. [19]

Drug contamination

In 2018, and then again in 2019, various brands of valsartan were recalled because of contamination with NDMA. [20] [21] In 2019, ranitidine was recalled around the world due to contamination with NDMA. [22] In December 2019, the FDA began testing samples of the diabetes drug metformin for NDMA. [23] The FDA announcement followed a recall of three versions of metformin in Singapore, and the European Medicines Agency's request that manufacturers test for NDMA. [24] [25]

In September 2019, N-nitrosodimethylamine was discovered in ranitidine products from a number of manufacturers, resulting in recalls. [26] [27] [28] [29] [30] [31] In April 2020, ranitidine was withdrawn from the United States market, suspended in the European Union, and suspended in Australia due to concerns about NDMA. [28] [32] [33] [34] [35]

In August 2021, a class 2 medicines recall was issued for a batch of metformin hydrochloride 500 mg/5ml Oral Solution from Rosemont Pharmaceuticals Limited, which was first distributed in December 2020, due to the identification of higher than acceptable levels of NDMA. [36]

Effect on biological systems

A study has shown that NDMA perturbs arginine biosynthesis, mitochondrial genome maintenance, and DNA damage repair in yeast. [37]

Related Research Articles

<span class="mw-page-title-main">Over-the-counter drug</span> Medication available without a prescription

Over-the-counter (OTC) drugs are medicines sold directly to a consumer without a requirement for a prescription from a healthcare professional, as opposed to prescription drugs, which may be supplied only to consumers possessing a valid prescription. In many countries, OTC drugs are selected by a regulatory agency to ensure that they contain ingredients that are safe and effective when used without a physician's care. OTC drugs are usually regulated according to their active pharmaceutical ingredient (API) rather than final products. By regulating APIs instead of specific drug formulations, governments allow manufacturers the freedom to formulate ingredients, or combinations of ingredients, into proprietary mixtures.

<span class="mw-page-title-main">Metformin</span> Medication used to treat diabetes by reducing glucose levels

Metformin, sold under the brand name Glucophage, among others, is the main first-line medication for the treatment of type 2 diabetes, particularly in people who are overweight. It is also used in the treatment of polycystic ovary syndrome. It is sometimes used as an off-label adjunct to lessen the risk of metabolic syndrome in people who take antipsychotics. Metformin is not associated with weight gain and is taken by mouth.

<span class="mw-page-title-main">Angiotensin II receptor blocker</span> Group of pharmaceuticals that modulate the renin–angiotensin system

Angiotensin II receptor blockers (ARBs), formally angiotensin II receptor type 1 (AT1) antagonists, also known as angiotensin receptor blockers, angiotensin II receptor antagonists, or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II receptor type 1 (AT1) and thereby block the arteriolar contraction and sodium retention effects of renin–angiotensin system.

<span class="mw-page-title-main">Nitrosamine</span> Organic compounds of the form >N–N=O

In organic chemistry, nitrosamines are organic compounds with the chemical structure R2N−N=O, where R is usually an alkyl group. They feature a nitroso group bonded to a deprotonated amine. Most nitrosamines are carcinogenic in nonhuman animals. A 2006 systematic review supports a "positive association between nitrite and nitrosamine intake and gastric cancer, between meat and processed meat intake and gastric cancer and oesophageal cancer, and between preserved fish, vegetable and smoked food intake and gastric cancer, but is not conclusive".

<span class="mw-page-title-main">Ranitidine</span> Medication that decreases stomach acid

Ranitidine, previously sold under the brand name Zantac among others, is a medication used to decrease stomach acid production. It was commonly used in treatment of peptic ulcer disease, gastroesophageal reflux disease, and Zollinger–Ellison syndrome. It can be given by mouth, injection into a muscle, or injection into a vein.

<span class="mw-page-title-main">Valsartan</span> Angiotensin II receptor antagonist

Valsartan, sold under the brand name Diovan among others, is a medication used to treat high blood pressure, heart failure, and diabetic kidney disease. It belongs to a class of medications referred to as angiotensin II receptor blockers (ARBs). It is a reasonable initial treatment for high blood pressure. It is taken by mouth.

<span class="mw-page-title-main">Rifapentine</span> Chemical compound

Rifapentine, sold under the brand name Priftin, is an antibiotic used in the treatment of tuberculosis. In active tuberculosis it is used together with other antituberculosis medications. In latent tuberculosis it is typically used with isoniazid. It is taken by mouth.

Torrent Pharmaceuticals Ltd is an Indian multinational pharmaceutical company, part of the Torrent Group and headquartered in Ahmedabad. It was promoted by U. N. Mehta, initially as Trinity Laboratories Ltd, and was later renamed Torrent Pharmaceuticals Ltd.

<span class="mw-page-title-main">Dapagliflozin</span> Diabetes medication

Dapagliflozin, sold under the brand names Farxiga (US) and Forxiga (EU) among others, is a medication used to treat type 2 diabetes. It is also used to treat adults with heart failure and chronic kidney disease. It reversibly inhibits sodium-glucose co-transporter 2 (SGLT2) in the renal proximal convoluted tubule to reduce glucose reabsorption and increase urinary glucose excretion.

<i>N</i>-Nitrosodiethylamine Chemical compound

N-Nitrosodiethylamine (NDEA) is an organic compound with the formula Et2NNO (Et = C2H5). A member of the nitrosamines, it is a light-sensitive, volatile, clear yellow oil that is soluble in water, lipids, and other organic solvents. It has an amine or aromatic odor. It is used as gasoline and lubricant additive, antioxidant, and stabilizer for industry materials. When heated to decomposition, N-nitrosodiethylamine emits toxic fumes of nitrogen oxides. N-Nitrosodiethylamine affects DNA integrity, probably by alkylation, and is used in experimental research to induce liver tumorigenesis. It is carcinogenic and mutagenic. NDEA has also been found to perturb amino acid biosynthesis including arginine, as well as DNA damage repair and mitochondrial genome maintenance in yeast.

Sitagliptin/metformin, sold under the brand name Janumet among others, is a fixed-dose combination anti-diabetic medication used to treat type 2 diabetes. It may be used in those whose blood sugar is not controlled with metformin and a sulfonylurea. It is taken by mouth.

<span class="mw-page-title-main">Pasireotide</span> Pharmaceutical drug

Pasireotide, sold under the brand name Signifor, is an orphan drug approved in the United States and the European Union for the treatment of Cushing's disease in patients who fail or are ineligible for surgical therapy. It was developed by Novartis. Pasireotide is a somatostatin analog with a 40-fold increased affinity to somatostatin receptor 5 compared to other somatostatin analogs.

<span class="mw-page-title-main">Aurobindo Pharma</span> Indian multinational pharmaceutical company

Aurobindo Pharma Limited is an Indian multinational pharmaceutical manufacturing company headquartered in HITEC City, Hyderabad, India. The company manufactures generic pharmaceuticals and active pharmaceutical ingredients. The company’s area of activity includes six major therapeutic and product areas: antibiotics, anti-retrovirals, cardiovascular products, central nervous system products, gastroenterologicals, and anti-allergics. The company markets these products in over 125 countries. Its marketing partners include AstraZeneca and Pfizer.

<span class="mw-page-title-main">Ertugliflozin</span> Chemical compound

Ertugliflozin, sold under the brand name Steglatro, is a medication for the treatment of type 2 diabetes.

Vildagliptin/metformin, sold under the brand name Eucreas among others, is a fixed-dose combination anti-diabetic medication for the treatment of type 2 diabetes. It was approved for use in the European Union in November 2007, and the approval was updated in 2008. It combines 50 mg vildagliptin with either 500, 850, or 1000 mg metformin.

Tagraxofusp, sold under the brand name Elzonris, is an anti-cancer medication for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN).

Empagliflozin/metformin, sold under the brand name Synjardy among others, is a fixed-dose combination anti-diabetic medication used to treat type 2 diabetes. It contains empagliflozin and metformin hydrochloride. It is taken by mouth.

Dapagliflozin/saxagliptin/metformin, sold under the brand name Qternmet XR among others, is a fixed-dose combination anti-diabetic medication used as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes. It is a combination of dapagliflozin, saxagliptin, and metformin. It is taken by mouth. The drug is marketed by AstraZeneca.

Canagliflozin/metformin, sold under the brand name Vokanamet among others, is a fixed-dose combination anti-diabetic medication used for the treatment of type 2 diabetes. It is used in combination with diet and exercise. It is taken by mouth.

Pioglitazone/glimepiride, sold under the brand name Duetact among others, is a fixed-dose combination anti-diabetic medication for the treatment of type 2 diabetes. It contains the thiazolidinedione pioglitazone and the sulfonylurea glimepiride. It is taken by mouth.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0461". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 3 Tricker, A.R.; Preussmann, R. (1991). "Carcinogenic N-nitrosamines in the Diet: Occurrence, Formation, Mechanisms and Carcinogenic Potential". Mutation Research/Genetic Toxicology. 259 (3–4): 277–289. doi:10.1016/0165-1218(91)90123-4. PMID   2017213.
  3. David L. Sedlak; Rula A. Deeb; Elisabeth L. Hawley; William A. Mitch; Timothy D. Durbin; Sam Mowbray; Steve Carr (2005). "Sources and Fate of Nitrosodimethylamine and Its Precursors in Municipal Wastewater Treatment Plants". Water Environment Research. 77 (1, Emerging Micropollutants in Treatment Systems (Jan.–Feb. 2005)): 32–39. doi: 10.2175/106143005X41591 . JSTOR   25045835. PMID   15765933. S2CID   9690388.
  4. 1 2 Najm, I.; Trussell, R. R. (2001). "NDMA Formation in Water and Wastewater". Journal of the American Water Works Association. 93 (2): 92–99. doi:10.1002/j.1551-8833.2001.tb09129.x. ISSN   0003-150X. S2CID   93202942.
  5. 1 2 Mitch, W. A.; Sharp, J. O.; Trussell, R. R.; Valentine, R. L.; Alvarez-Cohen, L.; Sedlak, D. L. (2003). "N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review". Environmental Engineering Science. 20 (5): 389–404. CiteSeerX   10.1.1.184.204 . doi:10.1089/109287503768335896.
  6. Hecht, Stephen S. (1998). "Biochemistry, Biology, and Carcinogenicity of Tobacco-Specific N-Nitrosamines†". Chemical Research in Toxicology. 11 (6): 559–603. doi:10.1021/tx980005y. PMID   9625726.
  7. Andrzejewski, P.; Kasprzyk-Hordern, B.; Nawrocki, J. (2005). "The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants". Desalination. 176 (1–3): 37–45. doi:10.1016/j.desal.2004.11.009.
  8. George, J.; Rao, K. R.; Stern, R.; Chandrakasan, G. (2001). "Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen". Toxicology. 156 (2–3): 129–138. doi:10.1016/S0300-483X(00)00352-8. PMID   11164615.
  9. Peto, R.; Gray, R.; Brantom, P.; Grasso, P. (1991). "Dose and Time Relationships for Tumor Induction in the Liver and Esophagus of 4080 Inbred Rats by Chronic Ingestion of N-Nitrosodiethylamine or N-Nitrosodimethylamine". Cancer Research. 51 (23 Part 2): 6452–6469. PMID   1933907.
  10. "40 CFR 355: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities" (2/14/2024 ed.). Government Printing Office . Retrieved February 16, 2024.
  11. 1 2 3 4 5 "EMA finalises opinion on presence of nitrosamines in medicines". European Medicines Agency (EMA) (Press release). 9 July 2020. Retrieved 11 July 2020. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  12. "Nitrosamine impurities". European Medicines Agency (EMA). 23 October 2019. Retrieved 11 July 2020. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  13. Krebs, Bernt; Mandt, Jürgen (1975). "Kristallstruktur des N-Nitrosodimethylamins". Chemische Berichte. 108 (4): 1130–1137. doi:10.1002/cber.19751080419.
  14. Mitch, William A.; Sedlak, David L. (2002). "Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination". Environmental Science & Technology. 36 (4): 588–595. Bibcode:2002EnST...36..588M. doi:10.1021/es010684q. PMID   11878371.
  15. Ein teuflischer Plan: Tod aus dem Marmeladeglas (archived from the original, in German).
  16. Karsten Strey: "Die Welt der Gifte", Lehmanns, 2. Edition p. 193 (in German).
  17. Roueché, Berton (January 25, 1982). "The Prognosis for this Patient is Horrible". The New Yorker . pp. 57–71. Retrieved 2 July 2021.
  18. "15 days log in hospital". Archived from the original on 2014-01-09. Retrieved 2013-04-30.
  19. "Man admits poisoning fellow researcher in Kingston". The Kingston Whig Standard. 1 December 1969. Retrieved 2 July 2021.
  20. "FDA Updates and Press Announcements on Angiotensin II Receptor Blocker (ARB) Recalls (Valsartan, Losartan, and Irbesartan)". U.S. Food and Drug Administration (FDA). November 7, 2019. Retrieved November 15, 2019.
  21. "EMA reviewing medicines containing valsartan from Zhejiang Huahai following detection of an impurity: some being recalled across the EU". European Medicines Agency (EMA) (Press release). September 17, 2018. Retrieved December 3, 2019. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  22. BBC Staff (September 29, 2019). "Sale of heartburn drug suspended over cancer fears". BBC News. Retrieved December 3, 2019.
  23. "FDA Updates and Press Announcements on NDMA in Metformin". U.S. Food and Drug Administration (FDA). 2 July 2020. Retrieved 11 July 2020.
  24. Lauerman, John (December 4, 2019). "Diabetes Drugs Latest to Be Targeted for Carcinogen Scrutiny". Bloomberg Business. Retrieved January 5, 2020.
  25. Koenig, D. (December 6, 2019). "FDA Investigating Metformin for Possible Carcinogen". Medscape. Retrieved December 14, 2019.
  26. "Health Canada assessing NDMA in ranitidine". Health Canada . 13 September 2019. Archived from the original on 26 September 2019. Retrieved 26 September 2019.
  27. "Statement alerting patients and health care professionals of NDMA found in samples of ranitidine". U.S. Food and Drug Administration (FDA). 13 September 2019. Archived from the original on 26 September 2019. Retrieved 26 September 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  28. 1 2 "Questions and Answers: NDMA impurities in ranitidine (commonly known as Zantac)". U.S. Food and Drug Administration (FDA). 11 October 2019. Archived from the original on 24 October 2019. Retrieved 23 October 2019.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  29. "EMA to provide guidance on avoiding nitrosamines in human medicines". European Medicines Agency (EMA) (Press release). 13 September 2019. Retrieved 19 September 2019. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  30. "EMA to review ranitidine medicines following detection of NDMA". European Medicines Agency (EMA) (Press release). 13 September 2019. Retrieved 19 September 2019. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  31. "FDA updates and press announcements on NDMA in Zantac (ranitidine)". U.S. Food and Drug Administration (FDA). 28 October 2019. Archived from the original on 29 October 2019. Retrieved 28 October 2019. FDA observed the testing method used by a third-party laboratory uses higher temperatures. The higher temperatures generated very high levels of NDMA from ranitidine products because of the test procedure. FDA published the method for testing angiotensin II receptor blockers (ARBs) for nitrosamine impurities. That method is not suitable for testing ranitidine because heating the sample generates NDMA.
    FDA recommends using an LC-HRMS testing protocol to test samples of ranitidine. FDA's LC-HRMS testing method does not use elevated temperatures and has shown the presence of much lower levels of NDMA in ranitidine medicines than reported by the third-party laboratory. International regulators using similar LC-MS testing methods have also shown the presence of low levels of NDMA in ranitidine samples.
    PD-icon.svg This article incorporates text from this source, which is in the public domain .
  32. "FDA Requests Removal of All Ranitidine Products (Zantac) from the Market". U.S. Food and Drug Administration (Press release). 1 April 2020. Retrieved 1 April 2020.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  33. "Suspension of ranitidine medicines in the EU". European Medicines Agency (EMA) (Press release). 30 April 2020. Retrieved 2 June 2020. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  34. "Ranitidine-containing medicinal products". European Medicines Agency (EMA). 30 April 2020. Retrieved 6 May 2020. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  35. "Ranitidine". Therapeutic Goods Administration (TGA). 2 April 2020. Archived from the original on 29 August 2021. Retrieved 19 July 2020.
  36. "Class 2 Medicines Recall: Rosemont Pharmaceuticals Limited, Metformin Hydrochloride 500mg/5ml Oral Solution, PL 00427/0139, EL (21)A/20". GOV.UK. Retrieved 2021-08-27.
  37. Ogbede, J.U., Giaever, G. & Nislow, C. A genome-wide portrait of pervasive drug contaminants. Sci Rep 11, 12487 (2021). doi : 10.1038/s41598-021-91792-1