Porolepiformes

Last updated

Porolepiformes
Temporal range: 416–318  Ma
Various Porolepiformes.jpg
Various genera
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Sarcopterygii
Clade: Rhipidistia
Clade: Dipnomorpha
Class: Porolepimorpha
Order: Porolepiformes
Jarvik 1942
Genera

Porolepiformes is an order of prehistoric lobe-finned fish which lived during the Devonian period (about 416 to 359 million years ago). They are thought to represent the sister group to lungfish (class Dipnoi). [1] The group contains two families: Holoptychiidae and Porolepididae.

Porolepiformes was established by the Swedish paleontologist Erik Jarvik, and were thought to have given rise to the salamanders and caecilians independently of the other tetrapods. [2] He based this conclusion on the shapes of the snouts of the aforementioned groups. This view is no longer in favour in Paleontology. [3]

Jarvik also claimed the existence of choanae in porolepiformes which linked them to tetrapods, but this has remained controversial. [4] Recent phylogenetic reconstruction places porolepiformes close to lungfishes. [5]

More recent evidence has shown that at least one genus Laccognathus was most likely amphibious. [6]

Porolepiform fossil (cast) from a Swedish natural history museum. Note that the description calls it a "Salamander fish", in accordance with Jarvik's obsolete hypothesis. Holoptychius quebecensis -"salamanderfisk".jpg
Porolepiform fossil (cast) from a Swedish natural history museum. Note that the description calls it a "Salamander fish", in accordance with Jarvik's obsolete hypothesis.

Phylogeny

Mikko's Phylogeny Archive [7]

Porolepidae

Heimenia ensis ØRvik 1969

Porolepis

P. brevis Jarvik 1937

P. elongata Jarvik 1937

P. posnaniensis (Kade 1858)

P. siegenensis Gross 1935

P. spitsbergensis Jarvik 1937

Holoptychidae

?† Ventalepis ketleriensis Schultze 1980

?† Duffichthys mirabilis Ahlberg 1992

Pseudosauripterus anglicus (Woodward 1891)

Glyptolepis

G. baltica

G. groenlandica Jarvik 1972

G. leptopterus Agassiz 1844

G. paucidens

Holoptychius

H. americanus Leidy 1843

H. flemingi Agassiz 1844

H. giganteus Agassiz 1839

H. halli Newberry 1889

H. hopkinsii M'Coy 1844

H. nobilissimus Agassiz 1835

H. quebecensis

Laccognathus

L. panderi TGross 1941

L. grossi Vorobyeva 2006

L. embryi Downs et al. 2011

Related Research Articles

<span class="mw-page-title-main">Lungfish</span> A type of bony fish

Lungfish are freshwater vertebrates belonging to the class Dipnoi. Lungfish are best known for retaining ancestral characteristics within the Osteichthyes, including the ability to breathe air, and ancestral structures within Sarcopterygii, including the presence of lobed fins with a well-developed internal skeleton. Lungfish represent the closest living relatives of the tetrapods. The mouths of lungfish typically bear tooth plates, which are used to crush hard shelled organisms.

<span class="mw-page-title-main">Sarcopterygii</span> Class of fishes

Sarcopterygii — sometimes considered synonymous with Crossopterygii — is a taxon of the bony fish known as the lobe-finned fish or sarcopterygians, characterised by prominent muscular limb buds (lobes) within the fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines (lepidotrichia) supporting the fins.

<i>Ichthyostega</i> Extinct genus of tetrapodomorphs

Ichthyostega is an extinct genus of limbed tetrapodomorphs from the Late Devonian of what is now Greenland. It was among the earliest four-limbed vertebrates ever in the fossil record and was one of the first with weight-bearing adaptations for terrestrial locomotion. Ichthyostega possessed lungs and limbs that helped it navigate through shallow water in swamps. Although Ichthyostega is often labelled a 'tetrapod' because of its limbs and fingers, it evolved long before true crown group tetrapods and could more accurately be referred to as a stegocephalian or stem tetrapod. Likewise, while undoubtedly of amphibian build and habit, it is not a true member of the group in the narrow sense, as the first modern amphibians appeared in the Triassic Period. Until finds of other early stegocephalians and closely related fishes in the late 20th century, Ichthyostega stood alone as a transitional fossil between fish and tetrapods, combining fish and tetrapod features. Newer research has shown that it had an unusual anatomy, functioning more akin to a seal than a salamander, as previously assumed.

<span class="mw-page-title-main">Erik Jarvik</span> Swedish paleontologist

Anders Erik Vilhelm Jarvik was a Swedish paleontologist who worked extensively on the sarcopterygian fish Eusthenopteron. In a career that spanned some 60 years, Jarvik produced some of the most detailed anatomical work on this fish, making it arguably the best known fossil vertebrate.

<span class="mw-page-title-main">Euteleostomi</span> Clade including most vertebrates

Euteleostomi is a successful clade that includes more than 90% of the living species of vertebrates. Both its major subgroups are successful today: Actinopterygii includes most extant bony fish species, and Sarcopterygii includes the tetrapods.

<span class="mw-page-title-main">Labyrinthodontia</span> Subclass of early amphibious tetrapods

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Batrachomorpha</span> Clade of amphibians

The Batrachomorpha are a clade containing recent and extinct amphibians that are more closely related to modern amphibians than they are to mammals and reptiles. According to many analyses they include the extinct Temnospondyli; some show that they include the Lepospondyli instead. The name traditionally indicated a more limited group.

<span class="mw-page-title-main">Rhipidistia</span> Clade of vertebrates

Rhipidistia, also known as Dipnotetrapodomorpha, is a clade of lobe-finned fishes which includes the tetrapods and lungfishes. Rhipidistia formerly referred to a subgroup of Sarcopterygii consisting of the Porolepiformes and Osteolepiformes, a definition that is now obsolete. However, as cladistic understanding of the vertebrates has improved over the last few decades, a monophyletic Rhipidistia is now understood to include the whole of Tetrapoda and the lungfishes.

<span class="mw-page-title-main">Tetrapodomorpha</span> Clade of vertebrates

The Tetrapodomorpha are a clade of vertebrates consisting of tetrapods and their closest sarcopterygian relatives that are more closely related to living tetrapods than to living lungfish. Advanced forms transitional between fish and the early labyrinthodonts, such as Tiktaalik, have been referred to as "fishapods" by their discoverers, being half-fish, half-tetrapods, in appearance and limb morphology. The Tetrapodomorpha contains the crown group tetrapods and several groups of early stem tetrapods, which includes several groups of related lobe-finned fishes, collectively known as the osteolepiforms. The Tetrapodomorpha minus the crown group Tetrapoda are the stem Tetrapoda, a paraphyletic unit encompassing the fish to tetrapod transition.

Kenichthys is a genus of sarcopterygian fish from the Devonian period, and a member of the clade Tetrapodomorpha. The only known species of the genus is Kenichthys campbelli, the first remains of which were found in China in 1993. The genus is important to the study of the evolution of tetrapods due to the unique nature of its nostrils, which provide vital evidence regarding the evolutionary transition of fish-like nostrils to the tetrapod choanae.

<span class="mw-page-title-main">Fram Formation</span> Geologic formation in Nunavut, Canada

The Fram Formation is an Upper Devonian (Frasnian) sequence of rock strata on Ellesmere Island that came into prominence in 2006 with the discovery in its rocks of examples of the transitional fossil, Tiktaalik, a sarcopterygian or lobe-finned fish showing many tetrapod characteristics. Fossils of Laccognathus embryi, a porolepiform lobe-finned fish, and Qikiqtania, a close relative of Tiktaalik, were also found in the formation. The Fram Formation is a Middle to Upper Devonian clastic wedge forming an extensive continental facies consisting of sediments derived from deposits laid down in braided stream systems that formed some 375 million years ago, at a time when the North American craton ("Laurentia") was straddling the equator.

<span class="mw-page-title-main">Gunnar Säve-Söderbergh</span> Swedish paleontologist

Gunnar Säve-Söderbergh was a Swedish palaeontologist and geologist. Säve-Söderbergh was born at Falun, the son of the neurologist Gotthard Söderbergh and Inga Säve. He passed his G.C.E. at Gothenburg in 1928 and took bachelor's and licentiate's degrees at Uppsala University in 1931 and 1933, respectively. He was appointed professor of geology, historical geology in particular, at Uppsala in 1937.

Edward B. 'Ted' Daeschler is an American vertebrate paleontologist and Associate Curator and Chair of Vertebrate Biology at the Academy of Natural Sciences in Philadelphia. He is a specialist in fish paleontology, especially in the Late Devonian, and in the development of the first limbed vertebrates. He is the discoverer of the transitional fossil tetrapod Hynerpeton bassetti, and a Devonian fish-like specimen of Sauripterus taylori with fingerlike appendages, and was also part of a team of researchers that discovered the transitional fossil Tiktaalik.

<i>Eusthenodon</i> Extinct genus of tetrapodomorphs

Eusthenodon is an extinct genus of tristichopterid tetrapodomorphs from the Late Devonian period, ranging between 383 and 359 million years ago. They are well known for being a cosmopolitan genus with remains being recovered from East Greenland, Australia, Central Russia, South Africa, Pennsylvania, and Belgium. Compared to the other closely related genera of the Tristichopteridae clade, Eusthenodon was one of the largest lobe-finned fishes and among the most derived tristichopterids alongside its close relatives Cabonnichthys and Mandageria.

<i>Laccognathus</i> Extinct genus of fishes

Laccognathus is an extinct genus of amphibious lobe-finned fish from Europe and North America. They existed from the Middle Devonian to the Late Devonian. The name comes from Greek for 'pitted jaw'.

<span class="mw-page-title-main">Skull roof</span> Roofing bones of the skull

The skull roof or the roofing bones of the skull are a set of bones covering the brain, eyes and nostrils in bony fishes and all land-living vertebrates. The bones are derived from dermal bone and are part of the dermatocranium.

<i>Laccognathus embryi</i> Extinct species of fish

Laccognathus embryi is an extinct species of porolepiform lobe-finned fish recovered from Ellesmere Island, Canada. It existed during the Frasnian age of the Late Devonian epoch.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<span class="mw-page-title-main">Evolution of tetrapods</span> Evolution of four legged vertebrates and their derivatives

The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. Tetrapods are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals. While most species today are terrestrial, little evidence supports the idea that any of the earliest tetrapods could move about on land, as their limbs could not have held their midsections off the ground and the known trackways do not indicate they dragged their bellies around. Presumably, the tracks were made by animals walking along the bottoms of shallow bodies of water. The specific aquatic ancestors of the tetrapods, and the process by which land colonization occurred, remain unclear. They are areas of active research and debate among palaeontologists at present.

The evolution of fishes took place over a timeline which spans the Cambrian to the Cenozoic, including during that time in particular the Devonian, which has been dubbed the "age of fishes" for the many changes during that period.

References

  1. Nelson, Joseph S. (16 March 2016). Fishes of the World. ISBN   978-1-119-22081-7. OCLC   951128215.
  2. Jarvik, Erik. 1980. Basic structure and evolution of vertebrates. Vol. 1–2. Academic Press (London).
  3. Schultze, Hans-Peter & Trueb, Linda (1991). Origins of the higher groups of tetrapods: controversy and consensus. Cornell University Press. p. 37. ISBN   978-0-8014-2497-7.
  4. Clement, G., 2001. Evidence for lack of choanae in the Porolepiformes. Journal of Vertebrate Paleontology, 21: 795–802.
  5. Janvier , P., Early vertebrates. Oxford science publications. 1996, Oxford, New York: Clarendon Press; Oxford University Press.
  6. Vorobyeva, E.I. (2006). "A new species of Laccognathus (Porolepiform Crossopterygii) from the Devonian of Latvia". Paleontol. J. Physorg.com. 40 (3): 312–322. doi:10.1134/S0031030106030129. S2CID   129696592.
  7. Haaramo, Mikko (2003). "Porolepiformes". In Mikko's Phylogeny Archive. Retrieved November 4, 2013.