Preferential hyperacuity perimetry

Last updated
Preferential hyperacuity perimetry
Medical diagnostics
Purposeidentify and quantify visual abnormalities

Preferential hyperacuity perimetry (PHP) is a psychophysical test used to identify and quantify visual abnormalities such as metamorphopsia and scotoma. It is a type of perimetry.

Metamorphopsia is a type of distorted vision in which a grid of straight lines appears wavy and parts of the grid may appear blank. People can first notice they suffer with the condition when looking at mini-blinds in their home.

Scotoma Human disease

A scotoma is an area of partial alteration in the field of vision consisting of a partially diminished or entirely degenerated visual acuity that is surrounded by a field of normal – or relatively well-preserved – vision.

Contents

Background

Vision abnormalities such as metamorphopsia (distortions) and scotoma are symptoms of retinal diseases such as macular degeneration. In advanced stages of the disease, photoreceptor cells may be irreversibly damaged. Hence, if not treated, macular degeneration may lead to blindness. Awareness to early changes in vision, especially in high risk patients, leads to early treatment (such as intravitreal injection of anti-VEGF factors, e.g. bevacizumab or ranibizumab) and prevents loss of vision. [1] Because of complex brain mechanisms such as filling-in, patients with small and peripheral defects in their vision are often unaware of such changes until late stages in the disease. [2] Another problem is that minute visual aberrations can be normal and therefore should be distinguished from genuine visual abnormalities. Preferential hyperacuity perimetry (PHP) is a technology that bypasses filling-in and quantifies the extent of visual abnormalities. [3]

Macular degeneration degeneration of macula and posterior pole that is characterized by a loss of vision in the center of the visual field (the macula) resulting from damage to the retina and resulting in blurring of the sharp central vision

Macular degeneration, also known as age-related macular degeneration, is a medical condition which may result in blurred or no vision in the center of the visual field. Early on there are often no symptoms. Over time, however, some people experience a gradual worsening of vision that may affect one or both eyes. While it does not result in complete blindness, loss of central vision can make it hard to recognize faces, drive, read, or perform other activities of daily life. Visual hallucinations may also occur but these do not represent a mental illness.

Photoreceptor cell specialized type of cell found in the retina that is capable of visual phototransduction

A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light into signals that can stimulate biological processes. To be more specific, photoreceptor proteins in the cell absorb photons, triggering a change in the cell's membrane potential.

Bevacizumab, sold under the trade name Avastin, is a medication used to treat a number of types of cancers and a specific eye disease. For cancer it is given by slow injection into a vein and used for colon cancer, lung cancer, glioblastoma, and renal-cell carcinoma. For age-related macular degeneration it is given by injection into the eye.

Technology

PHP takes advantage of visual hyperacuity, also known as vernier acuity—the ability to identify the misalignment of visual objects. Visual hyperacuity is at least 10 times more sensitive than visual acuity, the ability to separate between distinct objects. [4] Therefore, in retinal diseases such as macular degeneration responses to hyperacuity stimuli may be abnormal long before any changes in visual acuity are observed. Another key element in PHP technology relies on the competition principle. According to this principle, visual attention is preferably attracted to the larger object. When two stimuli, which are different in size, are simultaneously and briefly displayed, the observer is more likely to perceive the larger of the two, while missing the other.

Vernier acuity

Vernier acuity is a type of visual acuity – more precisely of hyperacuity – that measures the ability to discern a disalignment among two line segments or gratings. A subject's vernier acuity is the smallest visible offset between the stimuli that can be detected. Because the disalignments are often much smaller than the diameter and spacing of retinal receptors, vernier acuity requires neural processing and "pooling" to detect it. Because vernier acuity exceeds acuity by far, the phenomenon has been termed hyperacuity. Vernier acuity develops rapidly during infancy and continues to slowly develop throughout childhood. At approximately three to twelve months old, it surpasses grating acuity in foveal vision in humans. However, vernier acuity decreases more quickly than grating acuity in peripheral vision. Vernier acuity was first explained by Ewald Hering in 1899, based on earlier data by Alfred Volkmann in 1863 and results by Ernst Anton Wülfing in 1892.

Visual acuity clarity of vision

Visual acuity (VA) commonly refers to the clarity of vision. Visual acuity is dependent on optical and neural factors, i.e., (i) the sharpness of the retinal focus within the eye, (ii) the health and functioning of the retina, and (iii) the sensitivity of the interpretative faculty of the brain.

PHP test

In a PHP test, the macula (central area of the retina) is scanned with a succession of stimuli, each stimulus consisting of a series of dots arranged along a vertical or horizontal axis. In each stimulus, a small number of dots are misaligned, thereby creating an artificial distortion (bump or wave). The examinee's task is to perceive these artificial distortions and mark their locations on the visual field. When a stimulus is projected on a healthy portion of the retina, the examinee identifies the artificial distortion and is likely to mark a correct location. If the stimulus is projected on a damaged region of the retina, a pathological distortion may be perceived instead of the artificial distortion, especially if the pathological distortion is more prominent than the artificial distortion. The examinee may then mark a location that is distant from the artificial distortion, indicating that a pathological distortion may have been perceived. By manipulating the amplitude of artificial distortions, the amplitude of the pathology in the area of interest can be quantified. At the end of test, comparison of the set of erroneous responses against a normative data base is used to determine if test results are within normal limits.

Related Research Articles

Micropsia

Micropsia is a condition affecting human visual perception in which objects are perceived to be smaller than they actually are. Micropsia can be caused by optical factors, by distortion of images in the eye, by changes in the brain, and from psychological factors. Dissociative phenomena are linked with micropsia, which may be the result of brain-lateralization disturbance.

Macropsia is a neurological condition affecting human visual perception, in which objects within an affected section of the visual field appear larger than normal, causing the person to feel smaller than they actually are. Macropsia, along with its opposite condition, micropsia, can be categorized under dysmetropsia. Macropsia is related to other conditions dealing with visual perception, such as aniseikonia and Alice in Wonderland Syndrome. Macropsia has a wide range of causes, from prescription and illicit drugs, to migraines and (rarely) complex partial epilepsy, and to different retinal conditions, such as epiretinal membrane. Physiologically, retinal macropsia results from the compression of cones in the eye. It is the compression of receptor distribution that results in greater stimulation and thus a larger perceived image of an object.

Retinoschisis Human disease

Retinoschisis is an eye disease characterized by the abnormal splitting of the retina's neurosensory layers, usually in the outer plexiform layer. Most common forms are asymptomatic, some rarer forms result in a loss of vision in the corresponding visual field.

In visual physiology, adaptation is the ability of the retina of the eye to adjust to various levels of light. Natural night vision, or scotopic vision, is the ability to see under low-light conditions. In humans, rod cells are exclusively responsible for night vision as cone cells are only able to function at higher illumination levels. Night vision is of lower quality than day vision because it is limited in resolution and colors cannot be discerned; only shades of gray are seen. In order for humans to transition from day to night vision they must undergo a dark adaptation period of up to two hours in which each eye adjusts from a high to a low luminescence "setting", increasing sensitivity hugely, by many orders of magnitude. This adaptation period is different between rod and cone cells and results from the regeneration of photopigments to increase retinal sensitivity. Light adaptation, in contrast, works very quickly, within seconds.

Macular edema Human disease

Macular edema occurs when fluid and protein deposits collect on or under the macula of the eye and causes it to thicken and swell (edema). The swelling may distort a person's central vision, because the macula holds tightly packed cones that provide sharp, clear, central vision to enable a person to see detail, form, and color that is directly in the centre of the field of view.

Amsler grid

The Amsler grid, used since 1945, is a grid of horizontal and vertical lines used to monitor a person's central visual field. The grid was developed by Marc Amsler, a Swiss ophthalmologist. It is a diagnostic tool that aids in the detection of visual disturbances caused by changes in the retina, particularly the macula, as well as the optic nerve and the visual pathway to the brain.

Cone dystrophy inherited ocular disorder characterized by the loss of cone cells

A cone dystrophy is an inherited ocular disorder characterized by the loss of cone cells, the photoreceptors responsible for both central and color vision.

A visual field test is an eye examination that can detect dysfunction in central and peripheral vision which may be caused by various medical conditions such as glaucoma, stroke, pituitary disease, brain tumours or other neurological deficits. Visual field testing can be performed clinically by keeping the subject's gaze fixed while presenting objects at various places within their visual field. Simple manual equipment can be used such as in the tangent screen test or the Amsler grid. When dedicated machinery is used it is called a perimeter.

Optic pit Human disease

Optic pit, optic nerve pit, or optic disc pit is a congenital excavation of the optic disc, resulting from a malformation during development of the eye. Optic pits are important because they are associated with posterior vitreous detachments (PVD) and even serous retinal detachments.

Choroidal neovascularization

Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal neovascularization is a common cause of neovascular degenerative maculopathy commonly exacerbated by extreme myopia, malignant myopic degeneration, or age-related developments.

David Anthony Newsome M.D. FARVO was a scientist, ophthalmologist, inventor, and author. He studied the treatment of age-related macular degeneration and proposed the usefulness of zinc supplements to slow the rate of vision loss from age-related macular degeneration.

Laser coagulation or laser photocoagulation surgery is used to treat a number of eye diseases and has become widely used in recent decades. During the procedure, a laser is used to finely cauterize ocular blood vessels to attempt to bring about various therapeutic benefits.

Distorted vision is a symptom with several different possible causes.

Hyperacuity (scientific term)

The sharpness of our senses is defined by the finest detail we can discriminate. Visual acuity is measured by the smallest letters that can be distinguished on a chart and is governed by the anatomical spacing of the mosaic of sensory elements on the retina. Yet spatial distinctions can be made on a finer scale still: misalignment of borders can be detected with a precision up to 10 times better than visual acuity, as already shown by Ewald Hering in 1899. This hyperacuity, transcending by far the size limits set by the retinal 'pixels', depends on sophisticated information processing in the brain.

Vitreomacular adhesion

Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.

Microperimetry, sometimes called Fundus related perimetry, is a type of visual field test which uses one of several technologies to create a "retinal sensitivity map" of the quantity of light perceived in specific parts of the retina in people who have lost the ability to fixate on an object or light source.

Geographic atrophy (GA), also known as atrophic age-related macular degeneration (AMD) or advanced dry AMD, is an advanced form of age-related macular degeneration that can result in the progressive and irreversible loss of retina which can lead to a loss of visual function over time. It is estimated that GA affects >5 million people worldwide and approximately 1 million patients in the US, which is similar to the prevalence of neovascular (wet) AMD, the other advanced form of the disease.

Occult macular dystrophy (OMD) is a rare inherited degradation of the retina, characterized by progressive loss of function in the most sensitive part of the central retina (macula), the location of the highest concentration of light-sensitive cells (photoreceptors) but presenting no visible abnormality. "Occult" refers to the degradation in the fundus being difficult to discern. The disorder is called "dystrophy" instead of "degradation" to distinguish its genetic origin from other causes, such as age. OMD was first reported by Y. Miyake et al. in 1989.

References

  1. Loewenstein A. (September 2007). "The significance of early detection of age-related macular degeneration: Richard & Hinda Rosenthal Foundation lecture". Retina. 27 (7): 873–878. doi:10.1097/IAE.0b013e318050d2ec. PMID   17891011.
  2. Achard OD, Safran AB, Duret FC, Ragama E (September 1995). "Role of the completion phenomenon in the evaluation of Amsler grid results". Am J Ophthalmol. 120 (3): 322–329. doi:10.1016/s0002-9394(14)72162-2. PMID   7661204.
  3. Goldstein M, Loewenstein A, Barak A, Pollack A, Bukelman A, Katz H, Springer A, Schahat AP, Bressler NM, Bressler SB, Conney MJ, Alster Y, Rafaeli O, Malach R (April–May 2005). ""Results of a multicenter clinical trial to evaluate the preferential hyperacuity perimeter for detection of age-related macular degeneration"". Retina. 25 (3): 296–303. doi:10.1097/00006982-200504000-00008. PMID   15805906.
  4. Westheimer G. (August 1975). ""Editorial: Visual acuity and hyperacuity"". Invest Ophthalmol. 14 (8): 570–572. PMID   1150397.