Reciprocity (network science)

Last updated

In network science, reciprocity is a measure of the likelihood of vertices in a directed network to be mutually linked. [1] Like the clustering coefficient, scale-free degree distribution, or community structure, reciprocity is a quantitative measure used to study complex networks.

Contents

Motivation

In real network problems, people are interested in determining the likelihood of occurring double links (with opposite directions) between vertex pairs. This problem is fundamental for several reasons. First, in the networks that transport information or material (such as email networks, [2] World Wide Web (WWW), [3] World Trade Web, [4] or Wikipedia [5] ), mutual links facilitate the transportation process. Second, when analyzing directed networks, people often treat them as undirected ones for simplicity; therefore, the information obtained from reciprocity studies helps to estimate the error introduced when a directed network is treated as undirected (for example, when measuring the clustering coefficient). Finally, detecting nontrivial patterns of reciprocity can reveal possible mechanisms and organizing principles that shape the observed network's topology. [1]

Definitions

Traditional definition

A traditional way to define the reciprocity is using the ratio of the number of links pointing in both directions to the total number of links L [6]

With this definition, is for a purely bidirectional network while for a purely unidirectional one. Real networks have an intermediate value between 0 and 1.

However, this definition of reciprocity has some defects. It cannot tell the relative difference of reciprocity compared with purely random network with the same number of vertices and edges. The useful information from reciprocity is not the value itself, but whether mutual links occur more or less often than expected by chance. Besides, in those networks containing self-linking loops (links starting and ending at the same vertex), the self-linking loops should be excluded when calculating .

Garlaschelli and Loffredo's definition

In order to overcome the defects of the above definition, Garlaschelli and Loffredo defined reciprocity as the correlation coefficient between the entries of the adjacency matrix of a directed graph ( if a link from to exists, and if not):

,

where the average value .

measures the ratio of observed to possible directed links (link density), and self-linking loops are now excluded from since is not equal to .

The definition can be written in the following simple form:

The new definition of reciprocity gives an absolute quantity which directly allows one to distinguish between reciprocal () and antireciprocal () networks, with mutual links occurring more and less often than random respectively.

If all the links occur in reciprocal pairs, ; if , .

This is another advantage of using , since it incorporates the idea that complete antireciprocality is more statistically significant in networks with larger density, while it must be regarded as a less pronounced effect in sparser networks.

Related Research Articles

In theoretical physics, the Batalin–Vilkovisky (BV) formalism was developed as a method for determining the ghost structure for Lagrangian gauge theories, such as gravity and supergravity, whose corresponding Hamiltonian formulation has constraints not related to a Lie algebra. The BV formalism, based on an action that contains both fields and "antifields", can be thought of as a vast generalization of the original BRST formalism for pure Yang–Mills theory to an arbitrary Lagrangian gauge theory. Other names for the Batalin–Vilkovisky formalism are field-antifield formalism, Lagrangian BRST formalism, or BV–BRST formalism. It should not be confused with the Batalin–Fradkin–Vilkovisky (BFV) formalism, which is the Hamiltonian counterpart.

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

The Peres–Horodecki criterion is a necessary condition, for the joint density matrix of two quantum mechanical systems and , to be separable. It is also called the PPT criterion, for positive partial transpose. In the 2×2 and 2×3 dimensional cases the condition is also sufficient. It is used to decide the separability of mixed states, where the Schmidt decomposition does not apply. The theorem was discovered in 1996 by Asher Peres and the Horodecki family

In quantum mechanics, separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. The physical intuition behind these definitions is that product states have no correlation between the different degrees of freedom, while separable states might have correlations, but all such correlations can be explained as due to a classical random variable, as opposed as being due to entanglement.

The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.

In physical cosmology, cosmological perturbation theory is the theory by which the evolution of structure is understood in the Big Bang model. Cosmological perturbation theory may be broken into two categories: Newtonian or general relativistic. Each case uses its governing equations to compute gravitational and pressure forces which cause small perturbations to grow and eventually seed the formation of stars, quasars, galaxies and clusters. Both cases apply only to situations where the universe is predominantly homogeneous, such as during cosmic inflation and large parts of the Big Bang. The universe is believed to still be homogeneous enough that the theory is a good approximation on the largest scales, but on smaller scales more involved techniques, such as N-body simulations, must be used. When deciding whether to use general relativity for perturbation theory, note that Newtonian physics is only applicable in some cases such as for scales smaller than the Hubble horizon, where spacetime is sufficiently flat, and for which speeds are non-relativistic.

In complex network theory, the fitness model is a model of the evolution of a network: how the links between nodes change over time depends on the fitness of nodes. Fitter nodes attract more links at the expense of less fit nodes.

<span class="mw-page-title-main">Assortativity</span> Tendency for similar nodes to be connected

Assortativity, or assortative mixing, is a preference for a network's nodes to attach to others that are similar in some way. Though the specific measure of similarity may vary, network theorists often examine assortativity in terms of a node's degree. The addition of this characteristic to network models more closely approximates the behaviors of many real world networks.

In mathematics, in the area of quantum information geometry, the Bures metric or Helstrom metric defines an infinitesimal distance between density matrix operators defining quantum states. It is a quantum generalization of the Fisher information metric, and is identical to the Fubini–Study metric when restricted to the pure states alone.

In quantum mechanics, specifically time-dependent density functional theory, the Runge–Gross theorem shows that for a many-body system evolving from a given initial wavefunction, there exists a one-to-one mapping between the potential in which the system evolves and the density of the system. The potentials under which the theorem holds are defined up to an additive purely time-dependent function: such functions only change the phase of the wavefunction and leave the density invariant. Most often the RG theorem is applied to molecular systems where the electronic density, ρ(r,t) changes in response to an external scalar potential, v(r,t), such as a time-varying electric field.

The spin stiffness or spin rigidity or helicity modulus or the "superfluid density" is a constant which represents the change in the ground state energy of a spin system as a result of introducing a slow in plane twist of the spins. The importance of this constant is in its use as an indicator of quantum phase transitions—specifically in models with metal-insulator transitions such as Mott insulators. It is also related to other topological invariants such as the Berry phase and Chern numbers as in the Quantum Hall effect.

In condensed matter physics, the dynamic structure factor is a mathematical function that contains information about inter-particle correlations and their time evolution. It is a generalization of the structure factor that considers correlations in both space and time. Experimentally, it can be accessed most directly by inelastic neutron scattering or X-ray Raman scattering.

In quantum mechanics, negativity is a measure of quantum entanglement which is easy to compute. It is a measure deriving from the PPT criterion for separability. It has shown to be an entanglement monotone and hence a proper measure of entanglement.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

<span class="mw-page-title-main">Quantum thermodynamics</span> Study of the relations between thermodynamics and quantum mechanics

Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized, obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules. Currently quantum thermodynamics addresses the emergence of thermodynamic laws from quantum mechanics. It differs from quantum statistical mechanics in the emphasis on dynamical processes out of equilibrium. In addition, there is a quest for the theory to be relevant for a single individual quantum system.

<span class="mw-page-title-main">Bianconi–Barabási model</span>

The Bianconi–Barabási model is a model in network science that explains the growth of complex evolving networks. This model can explain that nodes with different characteristics acquire links at different rates. It predicts that a node's growth depends on its fitness and can calculate the degree distribution. The Bianconi–Barabási model is named after its inventors Ginestra Bianconi and Albert-László Barabási. This model is a variant of the Barabási–Albert model. The model can be mapped to a Bose gas and this mapping can predict a topological phase transition between a "rich-get-richer" phase and a "winner-takes-all" phase.

Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.

The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information of a state with respect to the observable is defined as

A set of networks that satisfies given structural characteristics can be treated as a network ensemble. Brought up by Ginestra Bianconi in 2007, the entropy of a network ensemble measures the level of the order or uncertainty of a network ensemble.

In network science, the network entropy is a disorder measure derived from information theory to describe the level of randomness and the amount of information encoded in a graph. It is a relevant metric to quantitatively characterize real complex networks and can also be used to quantify network complexity

References

  1. 1 2 Diego Garlaschelli; Loffredo, Maria I. (December 2004). "Patterns of Link Reciprocity in Directed Networks". Physical Review Letters. American Physical Society. 93 (26): 268701. arXiv: cond-mat/0404521 . Bibcode:2004PhRvL..93z8701G. doi:10.1103/PhysRevLett.93.268701. PMID   15698035. S2CID   1043766.
  2. Newman, M. E. J.; Forrest, Stephanie; Balthrop, Justin (2002-09-10). "Email networks and the spread of computer viruses". Physical Review E. American Physical Society (APS). 66 (3): 035101(R). Bibcode:2002PhRvE..66c5101N. doi:10.1103/physreve.66.035101. ISSN   1063-651X. PMID   12366169.
  3. Albert, Réka; Jeong, Hawoong; Barabási, Albert-László (1999). "Diameter of the World-Wide Web". Nature. 401 (6749): 130–131. arXiv: cond-mat/9907038 . doi:10.1038/43601. ISSN   0028-0836. S2CID   4419938.
  4. Garlaschelli, Diego; Loffredo, Maria I. (2004-10-28). "Fitness-Dependent Topological Properties of the World Trade Web". Physical Review Letters. American Physical Society (APS). 93 (18): 188701. arXiv: cond-mat/0403051 . Bibcode:2004PhRvL..93r8701G. doi:10.1103/physrevlett.93.188701. ISSN   0031-9007. PMID   15525215. S2CID   16367275.
  5. Zlatić, V.; Božičević, M.; Štefančić, H.; Domazet, M. (2006-07-24). "Wikipedias: Collaborative web-based encyclopedias as complex networks". Physical Review E. 74 (1): 016115. arXiv: physics/0602149 . Bibcode:2006PhRvE..74a6115Z. doi:10.1103/physreve.74.016115. ISSN   1539-3755. PMID   16907159. S2CID   3388193.
  6. Newman, M. E. J.; Forrest, Stephanie; Balthrop, Justin (2002-09-10). "Email networks and the spread of computer viruses". Physical Review E. American Physical Society (APS). 66 (3): 035101(R). Bibcode:2002PhRvE..66c5101N. doi:10.1103/physreve.66.035101. ISSN   1063-651X. PMID   12366169.