SOD3

Last updated
SOD3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SOD3 , EC-SOD, superoxide dismutase 3, extracellular, superoxide dismutase 3
External IDs OMIM: 185490 MGI: 103181 HomoloGene: 2334 GeneCards: SOD3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003102

NM_011435

RefSeq (protein)

NP_003093

NP_035565

Location (UCSC) Chr 4: 24.79 – 24.8 Mb Chr 5: 52.52 – 52.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Extracellular superoxide dismutase [Cu-Zn] is an enzyme that in humans is encoded by the SOD3 gene.

This gene encodes a member of the superoxide dismutase (SOD) protein family. SODs are antioxidant enzymes that catalyze the dismutation of two superoxide radicals into hydrogen peroxide and oxygen. The product of this gene is thought to protect the brain, lungs, and other tissues from oxidative stress. The protein is secreted into the extracellular space and forms a glycosylated homotetramer that is anchored to the extracellular matrix (ECM) and cell surfaces through an interaction with heparan sulfate proteoglycan and collagen. A fraction of the protein is cleaved near the C-terminus before secretion to generate circulating tetramers that do not interact with the ECM. [5]

Among black garden ants (Lasius niger), the lifespan of queens is an order of magnitude greater than of workers despite no systematic nucleotide sequence difference between them. [6] The SOD3 gene was found to be the most differentially over-expressed gene in the brains of queen vs worker ants. This finding raises the possibility that SOD3 antioxidant activity plays a key role in the striking longevity of social insect queens. [6]

Related Research Articles

Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubricants, to prevent oxidation, and to foods to prevent spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol or bacillithiol, and enzyme systems like superoxide dismutase, can prevent damage from oxidative stress.

<span class="mw-page-title-main">Superoxide dismutase</span> Class of enzymes

Superoxide dismutase (SOD, EC 1.15.1.1) is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide (O
2
) radical into ordinary molecular oxygen (O2) and hydrogen peroxide (H
2
O
2
). Superoxide is produced as a by-product of oxygen metabolism and, if not regulated, causes many types of cell damage. Hydrogen peroxide is also damaging and is degraded by other enzymes such as catalase. Thus, SOD is an important antioxidant defense in nearly all living cells exposed to oxygen. One exception is Lactobacillus plantarum and related lactobacilli, which use a different mechanism to prevent damage from reactive O
2
.

<span class="mw-page-title-main">Glutathione peroxidase</span> Enzyme family protecting the organism from oxidative damages

Glutathione peroxidase (GPx) is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water.

The free radical theory of aging (FRTA) states that organisms age because cells accumulate free radical damage over time. A free radical is any atom or molecule that has a single unpaired electron in an outer shell. While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly reactive. For most biological structures, free radical damage is closely associated with oxidative damage. Antioxidants are reducing agents, and limit oxidative damage to biological structures by passivating them from free radicals.

<span class="mw-page-title-main">Thyrotropin-releasing hormone receptor</span> Protein-coding gene in the species Homo sapiens

Thyrotropin-releasing hormone receptor (TRHR) is a G protein-coupled receptor which binds thyrotropin-releasing hormone.

<span class="mw-page-title-main">Midkine</span> Protein-coding gene in the species Homo sapiens

Midkine, also known as neurite growth-promoting factor 2 (NEGF2), is a protein that in humans is encoded by the MDK gene.

<span class="mw-page-title-main">SOD1</span> Protein-coding gene in the species Homo sapiens

Superoxide dismutase [Cu-Zn] also known as superoxide dismutase 1 or hSod1 is an enzyme that in humans is encoded by the SOD1 gene, located on chromosome 21. SOD1 is one of three human superoxide dismutases. It is implicated in apoptosis, familial amyotrophic lateral sclerosis and Parkinson's disease.

<span class="mw-page-title-main">SOD2</span> Enzyme

Superoxide dismutase 2, mitochondrial (SOD2), also known as manganese-dependent superoxide dismutase (MnSOD), is an enzyme which in humans is encoded by the SOD2 gene on chromosome 6. A related pseudogene has been identified on chromosome 1. Alternative splicing of this gene results in multiple transcript variants. This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature aging, sporadic motor neuron disease, and cancer.

<span class="mw-page-title-main">Irwin Fridovich</span> American biochemist (1929-2019)

Irwin Fridovich was an American biochemist who, together with his graduate student Joe M. McCord, discovered the enzymatic activity of copper-zinc superoxide dismutase (SOD),—to protect organisms from the toxic effects of superoxide free radicals formed as a byproduct of normal oxygen metabolism. Subsequently, Fridovich's research group also discovered the manganese-containing and the iron-containing SODs from Escherichia coli and the mitochondrial MnSOD (SOD2), now known to be an essential protein in mammals. He spent the rest of his career studying the biochemical mechanisms of SOD and of biological superoxide toxicity, using bacteria as model systems. Fridovich was also Professor Emeritus of Biochemistry at Duke University.

<span class="mw-page-title-main">Laminin, alpha 5</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-5 is a protein that in humans is encoded by the LAMA5 gene.

<span class="mw-page-title-main">Collagen, type IV, alpha 2</span>

Collagen alpha-2(IV) chain is a protein that in humans is encoded by the COL4A2 gene.

<span class="mw-page-title-main">Laminin, alpha 3</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-3 is a protein that in humans is encoded by the LAMA3 gene.

<span class="mw-page-title-main">Laminin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-1 is a protein that in humans is encoded by the LAMA1 gene.

<span class="mw-page-title-main">FBLN2</span> Protein-coding gene in the species Homo sapiens

Fibulin-2 is a protein that in humans is encoded by the FBLN2 gene.

<span class="mw-page-title-main">SZT2</span> Protein-coding gene in the species Homo sapiens

Seizure threshold 2 homolog is a protein that in humans is encoded by the SZT2 gene.

Non-Homologous Isofunctional Enzymes (NISE) are two evolutionarily unrelated enzymes that catalyze the same chemical reaction. Enzymes that catalyze the same reaction are sometimes referred to as analogous as opposed to homologous (Homology, however it is more appropriate to name them as Non-homologous Isofunctional Enzymes, hence the acronym. These enzymes all serve the same end function but do so in different organisms without detectable similarity in primary and possibly tertiary structures.

<span class="mw-page-title-main">HECW1</span> Protein-coding gene in the species Homo sapiens

HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 is a protein that in humans is encoded by the HECW1 gene. In human it has 1606 amino acids and isoelectric point of 5.18.

<span class="mw-page-title-main">CCS (gene)</span> Protein-coding gene in the species Homo sapiens

Copper chaperone for superoxide dismutase is a metalloprotein that is responsible for the delivery of Cu to superoxide dismutase (SOD1). CCS is a 54kDa protein that is present in mammals and most eukaryotes including yeast. The structure of CCS is composed of three distinct domains that are necessary for its function. Although CCS is important for many organisms, there are CCS independent pathways for SOD1, and many species lack CCS all together, such as C. elegans. In humans the protein is encoded by the CCS gene.

<span class="mw-page-title-main">Superoxide dismutase mimetics</span> Synthetic compounds

Superoxide dismutase (SOD) mimetics are synthetic compounds that mimic the native superoxide dismutase enzyme. SOD mimetics effectively convert the superoxide anion, a reactive oxygen species, into hydrogen peroxide, which is further converted into water by catalase. Reactive oxygen species are natural byproducts of cellular respiration and cause oxidative stress and cell damage, which has been linked to causing cancers, neurodegeneration, age-related declines in health, and inflammatory diseases. SOD mimetics are a prime interest in therapeutic treatment of oxidative stress because of their smaller size, longer half-life, and similarity in function to the native enzyme.

<span class="mw-page-title-main">SDK1</span> Protein-coding gene in the species Homo sapiens

Sidekick cell adhesion molecule 1 is a protein that in humans is encoded by the SDK1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000109610 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000072941 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: SOD3 superoxide dismutase 3, extracellular".
  6. 1 2 Lucas ER, Keller L. Elevated expression of ageing and immunity genes in queens of the black garden ant. Exp Gerontol. 2018 Jul 15;108:92-98. doi: 10.1016/j.exger.2018.03.020. Epub 2018 Apr 3. PMID: 29625209

Further reading