GLRX2

Last updated
GLRX2
Protein GLRX2 PDB 2cq9.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GLRX2 , CGI-133, GRX2, glutaredoxin 2
External IDs OMIM: 606820 MGI: 1916617 HomoloGene: 41098 GeneCards: GLRX2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001243399
NM_016066
NM_197962

NM_001038592
NM_001038593
NM_001038594
NM_023505

RefSeq (protein)

NP_001230328
NP_057150
NP_932066

NP_001033681
NP_001033682
NP_001033683
NP_075994

Location (UCSC) Chr 1: 193.09 – 193.11 Mb Chr 1: 143.59 – 143.63 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Glutaredoxin 2 (GLRX2) is an enzyme that in humans encoded by the GLRX2 gene. GLRX2, also known as GRX2, is a glutaredoxin family protein and a thiol-disulfide oxidoreductase that maintains cellular thiol homeostasis. This gene consists of four exons and three introns, spanned 10 kilobase pairs, and localized to chromosome 1q31.2–31.3. [5]

Contents

Alternative splicing of GLRX2 leads to three isoforms of Grx2. One isoform, Grx2a, localizes to the mitochondria, is ubiquitously expressed in tissues (e.g. heart, skeletal muscle, kidney, and liver), regulates mitochondrial redox homeostasis, and protects cells against oxidative stress. [5] Isoforms Grx2b and Grx2c, both localized to the nucleus and cytosol, are expressed only in testes and cancer cell lines and facilitate cellular differentiation and transformation, potentially inducing tumor progression. [6] [7] [8]

Structure

Gene

The transcripts of mitochondrial and nuclear Grx2 isoforms, Grx2a and Grx2b, respectively, differ in the first exon, with the exon 1 in Grx2b located upstream of that in Grx2a. [7] Grx2c is derived from alternative splicing of the Grx2b transcript with a shorter exon 1 than that of Grx2b. [6]

Protein

As a GRX family protein, Grx2 has an N-terminal thioredoxin domain, possessing a 37CSYC40 active site motif with a serine residue replacing the conserved proline residue. This amino acid substitution allows the main chain of Grx2 to be more flexible, promoting coordination of the iron-sulfur cluster and facilitating deglutathionylation by enhanced glutathione-binding. [9] The cysteine pair (Cys28, Cys113) falls outside of the active site, and it is completely conserved in Grx2 proteins but not found in some other GRX family proteins (i.e. Grx1 and Grx5). A disulfide bond between this cysteine pair increases structural stability and provides resistance to over-oxidation induced enzymatic inactivation. [9]

Function

Grx2 functions as a part of the cellular redox signaling pathway and antioxidant defense mechanism. As a GRX family protein, Grx2 acts as an electron donor to deglutathionylate proteins. It has also been shown to reduce both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. [10] Grx2 is also an electron acceptor. It can catalyze the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins. [11] Additionally, NADPH and thioredoxin reductase efficiently reduce both the active site disulfide of Grx2 and the GSH-Grx2 intermediate formed in the reduction of glutathionylated substrates. [12]

Enzymatic activity of Grx2 leads to its role in regulating redox-induced apoptosis. Grx2 over-expression protects cells against H2O2-induced damage while Grx2 knockdown showed the opposite effect. The protection role of Grx2 against H2O2-induced apoptosis is likely associated with its ability to preserve the electron transport chain complex I. [13] In addition to H2O2, Grx2a overexpression is resistant to apoptosis induced by other oxidative stress reagents (i.e., doxorubicin (Dox) and phenylarsine oxide), due to reduced cardiolipin oxidation and subsequent cytochrome c release. [14] Interesting, Grx2 has also been found to prevent aggregation of mutant SOD1 in mitochondria and abolish its toxicity. [15]

Being a redox sensor, Grx2 activity is tightly regulated by the oxidative state of the environment via iron-sulfur cluster. In steady state, Grx2 forms dimers to coordinate iron-sulfur clusters, which in turn inactivate Grx2’s activity by sequestering the active-site cysteines. During oxidative stress, the dimers separate into iron-free active monomers, which restore Grx2’s activity. [9]

Clinical significance

From 42 cases of non-small cell lung cancer patients, the expression level of Grx2 showed a significant correlation with the degree of differentiation in adenocarcinoma and a clear inverse correlation with proliferation. [16] In tumor cells, cells with decreased Grx2 are dramatically sensitized to cell death induced by the anti-cancer drug, DOX. [17]

In cardiovascular disease, Grx2a overexpression protects mouse heart from Dox and ischemia-induced cardiac injury, potentially via increasing mitochondrial protein glutathionylation. [18] Conversely, Grx2 knockout hearts developed left ventricular hypertrophy and fibrosis, leading to hypertension. The mechanistic study shows that Grx2 knockout decreased mitochondrial ATP production, possibly via increased glutathionylation and thereby inhibition of complex I. [19]

Interactions

Grx2 has been shown to physically interact with MDH2, PITPNB, GPX4, CYCS, BAG3, and TXNRD1 in one independent high-throughput proteomic analysis. [20]

Related Research Articles

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

Thioredoxin reductases are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction of glutaredoxin like proteins known as NrdH. Both classes are flavoproteins which function as homodimers. Each monomer contains a FAD prosthetic group, a NADPH binding domain, and an active site containing a redox-active disulfide bond.

<span class="mw-page-title-main">Thioredoxin</span> Class of reduction–oxidation proteins

Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin is linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. Thioredoxins play a role in cell-to-cell communication.

<span class="mw-page-title-main">Glutathione disulfide</span> Chemical compound

Glutathione disulfide (GSSG) is a disulfide derived from two glutathione molecules.

<span class="mw-page-title-main">Glutaredoxin</span>

Glutaredoxins are small redox enzymes of approximately one hundred amino-acid residues that use glutathione as a cofactor. In humans this oxidation repair enzyme is also known to participate in many cellular functions, including redox signaling and regulation of glucose metabolism. Glutaredoxins are oxidized by substrates, and reduced non-enzymatically by glutathione. In contrast to thioredoxins, which are reduced by thioredoxin reductase, no oxidoreductase exists that specifically reduces glutaredoxins. Instead, glutaredoxins are reduced by the oxidation of glutathione. Reduced glutathione is then regenerated by glutathione reductase. Together these components compose the glutathione system.

<span class="mw-page-title-main">Peroxiredoxin</span> Family of antioxidant enzymes

Peroxiredoxins are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels and thereby mediate signal transduction in mammalian cells. The family members in humans are PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, and PRDX6. The physiological importance of peroxiredoxins is indicated by their relative abundance. Their function is the reduction of peroxides, specifically hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite.

NAD<sup>+</sup> kinase Enzyme

NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts nicotinamide adenine dinucleotide (NAD+) into NADP+ through phosphorylating the NAD+ coenzyme. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the pentose phosphate pathway to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the archaean Archaeoglobus fulgidus has been determined.

<span class="mw-page-title-main">BNIP3</span> Protein-coding gene in the species Homo sapiens

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 is a protein found in humans that is encoded by the BNIP3 gene.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">GLRX</span> Protein-coding gene in the species Homo sapiens

Glutaredoxin-1 is a protein that in humans is encoded by the GLRX gene.

<span class="mw-page-title-main">Peroxiredoxin 2</span> Protein found in humans

Peroxiredoxin-2 is a protein that in humans is encoded by the PRDX2 gene.

<span class="mw-page-title-main">PRDX5</span> Protein-coding gene in the species Homo sapiens

Peroxiredoxin-5 (PRDX5), mitochondrial is a protein that in humans is encoded by the PRDX5 gene, located on chromosome 11.

<span class="mw-page-title-main">PRDX3</span> Protein-coding gene in the species Homo sapiens

Thioredoxin-dependent peroxide reductase, mitochondrial is an enzyme that in humans is encoded by the PRDX3 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">TXN2</span> Protein-coding gene in the species Homo sapiens

Thioredoxin, mitochondrial also known as thioredoxin-2 is a protein that in humans is encoded by the TXN2 gene on chromosome 22. This nuclear gene encodes a mitochondrial member of the thioredoxin family, a group of small multifunctional redox-active proteins. The encoded protein may play important roles in the regulation of the mitochondrial membrane potential and in protection against oxidant-induced apoptosis.

<span class="mw-page-title-main">VDAC2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 2 is a protein that in humans is encoded by the VDAC2 gene on chromosome 10. This protein is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. VDACs are generally involved in the regulation of cell metabolism, mitochondrial apoptosis, and spermatogenesis. Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases. VDAC2 also mediates immune response to infectious bursal disease (IBD).

<span class="mw-page-title-main">VDAC3</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 3 (VDAC3) is a protein that in humans is encoded by the VDAC3 gene on chromosome 8. The protein encoded by this gene is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. Nonetheless, VDAC3 demonstrates limited pore-forming ability and, instead, interacts with other proteins to perform its biological functions, including sperm flagella assembly and centriole assembly. Mutations in VDAC3 have been linked to male infertility, as well as Parkinson's disease.

<span class="mw-page-title-main">RoGFP</span> Prodified GFP protein that exhibits different fluorescent properties when oxidized and reduced

The reduction-oxidation sensitive green fluorescent protein (roGFP) is a green fluorescent protein engineered to be sensitive to changes in the local redox environment. roGFPs are used as redox-sensitive biosensors.

<span class="mw-page-title-main">GLRX5</span> Protein-coding gene in the species Homo sapiens

Glutaredoxin 5, also known as GLRX5, is a protein which in humans is encoded by the GLRX5 gene located on chromosome 14. This gene encodes a mitochondrial protein, which is evolutionarily conserved. It is involved in the biogenesis of iron- sulfur clusters, which are required for normal iron homeostasis. Mutations in this gene are associated with autosomal recessive pyridoxine-refractory sideroblastic anemia.

<span class="mw-page-title-main">Glutaredoxin 2 (bacterial)</span>

In molecular biology, the glutaredoxin 2 family is a family of bacterial glutaredoxins. Unlike other glutaredoxins, glutaredoxin 2 (Grx2) cannot reduce ribonucleotide reductase. Grx2 has significantly higher catalytic activity in the reduction of mixed disulphides with glutathione (GSH) compared with other glutaredoxins. The active site residues (Cys9-Pro10-Tyr11-Cys12, in Escherichia coli Grx2, which are found at the interface between the N- and C-terminal domains are identical to other glutaredoxins, but there is no other similarity between glutaredoxin 2 and other glutaredoxins. Grx2 is structurally similar to glutathione-S-transferases, but there is no obvious sequence similarity. The inter-domain contacts are mainly hydrophobic, suggesting that the two domains are unlikely to be stable on their own. Both domains are needed for correct folding and activity of Grx2. It is thought that the primary function of Grx2 is to catalyse reversible glutathionylation of proteins with GSH in cellular redox regulation including the response to oxidative stress. These enzymes are not related to GLRX2.

<span class="mw-page-title-main">Danyelle Townsend</span> Biomedical scientist and academic

Danyelle M. Townsend is a biomedical scientist, and academic. She is a Professor and acting Department Chair of Drug Discovery and Biomedical Sciences at the Medical University of South Carolina (MUSC).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000023572 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000018196 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryukov VM, Kryukov GV, Lou MF (August 2001). "Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2". The Journal of Biological Chemistry. 276 (32): 30374–80. doi: 10.1074/jbc.M100020200 . PMID   11397793.
  6. 1 2 Lönn ME, Hudemann C, Berndt C, Cherkasov V, Capani F, Holmgren A, Lillig CH (March 2008). "Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms". Antioxidants & Redox Signaling. 10 (3): 547–57. doi:10.1089/ars.2007.1821. PMID   18092940.
  7. 1 2 Lundberg M, Johansson C, Chandra J, Enoksson M, Jacobsson G, Ljung J, Johansson M, Holmgren A (July 2001). "Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms". The Journal of Biological Chemistry. 276 (28): 26269–75. doi: 10.1074/jbc.M011605200 . PMID   11297543.
  8. "GLRX2 glutaredoxin 2 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2016-07-21.
  9. 1 2 3 Johansson C, Kavanagh KL, Gileadi O, Oppermann U (February 2007). "Reversible sequestration of active site cysteines in a 2Fe-2S-bridged dimer provides a mechanism for glutaredoxin 2 regulation in human mitochondria". The Journal of Biological Chemistry. 282 (5): 3077–82. doi: 10.1074/jbc.M608179200 . PMID   17121859.
  10. Zhang H, Du Y, Zhang X, Lu J, Holmgren A (August 2014). "Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal". Antioxidants & Redox Signaling. 21 (5): 669–81. doi:10.1089/ars.2013.5499. PMC   4098818 . PMID   24295294.
  11. Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (November 2004). "Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE". The Journal of Biological Chemistry. 279 (46): 47939–51. doi: 10.1074/jbc.M408011200 . PMID   15347644.
  12. Johansson C, Lillig CH, Holmgren A (February 2004). "Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase". The Journal of Biological Chemistry. 279 (9): 7537–43. doi: 10.1074/jbc.M312719200 . PMID   14676218.
  13. Wu H, Xing K, Lou MF (October 2010). "Glutaredoxin 2 prevents H(2)O(2)-induced cell apoptosis by protecting complex I activity in the mitochondria". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1797 (10): 1705–15. doi:10.1016/j.bbabio.2010.06.003. PMC   2964346 . PMID   20547138.
  14. Enoksson M, Fernandes AP, Prast S, Lillig CH, Holmgren A, Orrenius S (February 2005). "Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release". Biochemical and Biophysical Research Communications. 327 (3): 774–9. doi:10.1016/j.bbrc.2004.12.067. PMID   15649413.
  15. Ferri A, Fiorenzo P, Nencini M, Cozzolino M, Pesaresi MG, Valle C, Sepe S, Moreno S, Carrì MT (November 2010). "Glutaredoxin 2 prevents aggregation of mutant SOD1 in mitochondria and abolishes its toxicity". Human Molecular Genetics. 19 (22): 4529–42. doi:10.1093/hmg/ddq383. PMC   3298854 . PMID   20829229.
  16. Fernandes AP, Capitanio A, Selenius M, Brodin O, Rundlöf AK, Björnstedt M (September 2009). "Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation". Histopathology. 55 (3): 313–20. doi:10.1111/j.1365-2559.2009.03381.x. hdl: 10616/39062 . PMID   19723146. S2CID   24521953.
  17. Lillig CH, Lönn ME, Enoksson M, Fernandes AP, Holmgren A (September 2004). "Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide". Proceedings of the National Academy of Sciences of the United States of America. 101 (36): 13227–32. Bibcode:2004PNAS..10113227L. doi: 10.1073/pnas.0401896101 . PMC   516552 . PMID   15328416.
  18. Diotte NM, Xiong Y, Gao J, Chua BH, Ho YS (February 2009). "Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1793 (2): 427–38. doi: 10.1016/j.bbamcr.2008.10.014 . PMID   19038292. S2CID   17469972.
  19. Mailloux RJ, Xuan JY, McBride S, Maharsy W, Thorn S, Holterman CE, Kennedy CR, Rippstein P, deKemp R, da Silva J, Nemer M, Lou M, Harper ME (May 2014). "Glutaredoxin-2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions". The Journal of Biological Chemistry. 289 (21): 14812–28. doi: 10.1074/jbc.M114.550574 . PMC   4031535 . PMID   24727547.
  20. Tyers M. "GLRX2 (RP11-101E13.4) Result Summary". BioGRID. Retrieved 2016-07-21.

Further reading