Black garden ant

Last updated

Black garden ant
Black Garden Ant tending Citrus Mealybug (16063538972).jpg
Black garden ants tending to mealybugs
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Formicinae
Genus: Lasius
Species:
L. niger
Binomial name
Lasius niger
Black garden ant with the mandibles of an unindentified creature. IC Lasius with chelicerae.JPG
Black garden ant with the mandibles of an unindentified creature.

The black garden ant (Lasius niger), also known as the common black ant, is a formicine ant, the type species of the subgenus Lasius , which is found across Europe and in some parts of North America, South America, Asia and Australasia. The European species was split into two species; L. niger, which are found in open areas; and L. platythorax, which is found in forest habitats. [1] It is monogynous, meaning colonies contain a single queen.

Contents

Lasius niger colonies normally range from 4,000 to 7,000 workers, but can reach 40,000 in rare cases. A Lasius niger queen can live for up to 29 years [2] the longest recorded lifespan for any eusocial insect. [3] Lasius niger queens in the early stages of founding can have two to three other queens in the nest. They will tolerate each other until the first workers come, then it is most likely they will fight until one queen remains. Under laboratory conditions, workers can live at least 4 years. [4]

Lasius niger is host to a number of temporary social parasites of the Lasius mixtus group including Lasius mixtus and Lasius umbratus .

Appearance

CasteMonogyne
Queen phenotype9 mm long, glossy black color but appears to have slight brown stripes on her abdomen. The queen can reach 6-9mm in length and is smaller as a new queen. After a queen mates, she removes her wings and digests her wing muscles as food over the winter.
Male phenotype3.5–4.5 mm long, slim, colour black. Only produced by queens when the nuptial flights are approaching. They appear with a dark glossy body with a different shape from the workers, almost resembling a wasp in appearance. They have wing muscles which stand out from the rest of the body. They are 5-7mm long and have delicate wings.
Worker phenotype3–5 mm long, workers are dark glossy black. As the colony gets older it has been known for workers to increase in size over generations.
Major phenotypeLasius niger do not create a major caste.
Nest buildingNests underground, commonly under stones, but also in rotten wood, and under roots.
Nutrition Nectar, small insects such as codling moth larvae, fruit, will farm aphids, cockroaches, beetles.

Life cycle

Lasius Niger winged queen.jpg
Lasius Niger wingless queen.jpg
L. niger queens with and without wings

Mating flights

Ants mate on the wing, so "flying ants" are alates (reproductive individuals), which include males and gynes (virgin queens). The mating (or nuptial) flights of Lasius niger usually occur around June to September throughout the species' range; in North America flights usually occur during the autumn, whereas in Europe they generally take place during the hot summer months of July and August. Flights can contain thousands of winged males and females. [5]

Disparities between local weather conditions can cause nuptial flights to be out of phase amongst widespread populations of L. niger. During long-lasting, hot summers, flights can take place simultaneously across the country, but overcast weather with local patches of sunshine results in a far less synchronized emergence of alates.

Once the queens have mated they will land and discard their wings and begin to find a suitable place to dig a tunnel. Meanwhile, males generally only live for a day or two after the mating flights and will then die.

New nest

After removing her wings, a queen will move quickly to find moist ground, then start digging a tunnel. Once the tunnel has been completed, the queen will block the entrance and retreat to the bottom. Subsequently, she will dig out a small chamber. This will serve as the claustral chamber of the new colony. Generally, a queen will begin to lay eggs immediately after the construction of the chamber, and the eggs will develop to imagines in 8–10 weeks. Until the eggs hatch and the larvae grow to maturity, a Lasius niger queen will not eat, relying on the protein of her wing muscles to be broken down and digested. In some cases, a Lasius niger queen may eat her own eggs in order to survive.

Egg to ant

Lasius niger nest Lasius niger.jpg
Lasius niger nest

Lasius niger, like other ants, have four stages of development: egg, larva, pupa, and adult. Lasius niger lay tiny, white, kidney-shaped eggs with a smooth sticky surface which helps them to be carried in a group instead of one by one. After hatching Lasius niger proceed onto the larva stage resembling tiny maggots. The larvae need to be fed by the queen (or workers in the case of an established colony) if they are to mature; as they feed the larvae grow, shedding their skin, doing so usually three times in total. With each molt, the larvae grow hooked hairs which allow them to be carried in groups. When Lasius niger larvae reach the last molt they are generally too big to be carried as part of a group and so are carried individually. Once the larva grows big enough it spins a cocoon around itself. To aid this process a queen (or workers) may bury the larva so that it can spin its cocoon undisturbed, and begin a process of metamorphosis. Once the process is complete the Lasius niger worker emerges from the cocoon. At this stage, the callow worker is completely white but will darken over the course of an hour until it has turned black.

Colony established

The first worker ants that emerge are very small compared to later generations. At this point the workers immediately begin to expand the nest and care for the queen and brood; they eventually remove the seal from the entrance to the nest and begin to forage above ground. This is a critical time for the colony as they need to gather food quickly to support future growth and particularly to feed the starved queen, who would have lost around 50% of her body weight. From this point on the queen's egg laying output will increase significantly, becoming the queen's sole function. The later generations of worker ants will be bigger, stronger and more aggressive because there is more nutrition for them at the larval stage. The initial brood being fed only by the scarce resources available to a queen will be much smaller than brood supported by a team of foraging and nursing workers. Provided workers are able to find food, at this stage the colony will see an exponential rise in population. After several years, once the colony is well established, the queen will lay eggs that will become queens and males. Black ants often make large nests with extensive tunnel connections.

Quarantine behavior

When building their colony, the ants structure it so as to inhibit the transmission of different contagions. [6] Different communities within the colony are segregated by a limited number of connective nodes, allowing for greater protection of vulnerable hive members, such as larvae and pupae, and the queen. [6]

Additionally, individual infected ants have been observed as spending more time foraging outside of the hive, venturing farther than other ants, and limiting their interactions once within the hive again. [6]

Long-lived queens

Although worker ants live for a couple of months, queens typically survive for almost 15 years[ citation needed ] but there have been instances of queens living up to 29 years, [2] the longest recorded lifespan for any eusocial insect. [3] Understanding the basis for the greater longevity of queens has a bearing on the general unsolved problem in biology of the causes of aging. In the study of long-lived queen ants it was found that queens have a higher expression than genetically identical workers of genes involved in processing damaged macromolecules. [2] Genes with higher expression included those that are necessary for repair of DNA damage (see DNA damage theory of aging) and genes involved in proteasome-mediated, ubiquitin-dependent, protein catabolic processes.

Mutualisms

Lasius niger attending an extrafloral nectary on Vicia faba Vicia faba extrafloral nectary.jpg
Lasius niger attending an extrafloral nectary on Vicia faba

Lasius niger removes predators such as ladybirds from the vicinity of black bean aphid thus keeping their "milch cows" safe. [7] On a test plot of field beans ( Vicia faba ), plants without black bean aphids yielded an average of 56 seeds per plant, those with aphids and no ants yielded 17 seeds, and those with both ants and aphids averaged eight seeds per plant. [8] Vicia faba also produces extrafloral nectaries that Lasius niger can feed from directly. [9]

The Plebejus argus butterfly lays eggs near nests of L. niger, forming a mutualistic relationship. [10] [11] This mutualistic relationship benefits the adult butterfly by reducing the need for parental investment. [10] Once the eggs hatch, the ants chaperone the larvae, averting the attacks of predatory organisms like wasps and spiders as well as parasites. In return, the ants receive a saccharine secretion fortified with amino acids from an eversible gland on the larvae's back. [10] [11] As first instar larvae prepare to pupate, the ants carry the larvae into their nests. [10] Once the larvae become pupae, the ants continue to provide protection against predation and parasitism. [11] [10] The butterfly leaves the nest when it emerges in June. [11]

Related Research Articles

<i>Formica rufa</i> Species of ant

Formica rufa, also known as the red wood ant, southern wood ant, or horse ant, is a boreal member of the Formica rufa group of ants, and is the type species for that group, being described already by Linnaeus. It is native to Eurasia, with a recorded distribution stretching from the middle of Scandinavia to the northern Iberia and Anatolia, and from Great Britain to Lake Baikal, with unconfirmed reportings of it also to the Russian Far East. There are claims that it can be found in North America, but this is not confirmed in specialised literature, and no recent publication where North American wood ants are listed mentions it as present, while records from North America are all listed as dubious or unconfirmed in a record compilation. The workers' heads and thoraces are colored red and the abdomen brownish-black, usually with dark patches on the head and promensonotum, although some individuals may be more uniform reddish and even have some red on the part of the gaster facing the body. In order to separate them from closely related species, specimens needs to be inspected under magnification, where difference in hairiness are among the telling characteristics, with Formica rufa being hairier than per example Formica polyctena but less hairy than Formica lugubris. Workers are polymorphic, measuring 4.5–9 mm in length. They have large mandibles, and like many other ant species, they are able to spray formic acid from their abdomens as a defence. Formic acid was first extracted in 1671 by the English naturalist John Ray by distilling a large number of crushed ants of this species. Adult wood ants primarily feed on honeydew from aphids. Some groups form large networks of connected nests with multiple queen colonies, while others have single-queen colonies.

<span class="mw-page-title-main">Ant colony</span> Underground lair where ants live, eat, and tend eggs

An ant colony is a population of ants, typically from a single species, capable of maintaining their complete lifecycle. Ant colonies are eusocial, communal, and efficiently organized and are very much like those found in other social Hymenoptera, though the various groups of these developed sociality independently through convergent evolution. The typical colony consists of one or more egg-laying queens, numerous sterile females and, seasonally, many winged sexual males and females. In order to establish new colonies, ants undertake flights that occur at species-characteristic times of the day. Swarms of the winged sexuals depart the nest in search of other nests. The males die shortly thereafter, along with most of the females. A small percentage of the females survive to initiate new nests.

<span class="mw-page-title-main">Pharaoh ant</span> Species of ant

The pharaoh ant is a small (2 mm) yellow or light brown, almost transparent ant notorious for being a major indoor nuisance pest, especially in hospitals. A cryptogenic species, it has now been introduced to virtually every area of the world, including Europe, the Americas, Australasia and Southeast Asia. It is a major pest in the United States, Australia, and Europe. The ant's common name is possibly derived from the mistaken belief that it was one of the Egyptian (pharaonic) plagues.

<span class="mw-page-title-main">Silver-studded blue</span> Species of butterfly

The silver-studded blue is a butterfly in the family Lycaenidae. It has bright blue wings rimmed in black with white edges and silver spots on its hindwings, lending it the name of the silver-studded blue. P. argus can be found across Europe and east across the Palearctic, but it is most often studied in the United Kingdom where the species has experienced a severe decline in population due to habitat loss and fragmentation.

<span class="mw-page-title-main">Army ant</span> Name used for several ant species

The name army ant (or legionary ant or marabunta) is applied to over 200 ant species in different lineages. Because of their aggressive predatory foraging groups, known as "raids", a huge number of ants forage simultaneously over a limited area.

<span class="mw-page-title-main">Eucharitidae</span> Family of wasps

The Eucharitidae are a family of parasitic wasps. Eucharitid wasps are members of the superfamily Chalcidoidea and consist of four subfamilies: Akapalinae, Eucharitinae, Gollumiellinae, and Oraseminae. Most of the 42 genera and >400 species of Eucharitidae are members of the subfamilies Oraseminae and Eucharitinae, and are found in tropical regions of the world.

<span class="mw-page-title-main">Nuptial flight</span> Mating flight of eusocial insects

Nuptial flight is an important phase in the reproduction of most ant, termite, and some bee species. It is also observed in some fly species, such as Rhamphomyia longicauda.

<span class="mw-page-title-main">Queen ant</span> Adult reproducing ant in an ant colony

A queen ant is an adult, reproducing female ant in an ant colony; she is usually the mother of all the other ants in that colony. Some female ants, such as the Cataglyphis, do not need to mate to produce offspring, reproducing through asexual parthenogenesis or cloning, and all of those offspring will be female. Others, like those in the genus Crematogaster, mate in a nuptial flight. Queen offspring ants among most species develop from larvae specially fed in order to become sexually mature.

<i>Solenopsis molesta</i> Species of ant

Solenopsis molesta is the best known species of Solenopsisthief ants. They get their names from their habit of nesting close to other ant nests, from which they steal food. They are also called grease ants because they are attracted to grease. Nuptial flight in this species occur from late July through early fall.

<span class="mw-page-title-main">Little black ant</span> Species of ant

The little black ant is a species of ant native to North America. It is a shiny black color, the workers about 1 to 2 mm long and the queens 4 to 5 mm long. It is a monomorphic species, with only one caste of worker, and polygyne, meaning a nest may have more than one queen. A colony is usually moderately sized with only a few thousand workers.

<i>Lasius umbratus</i> Species of ant

Lasius umbratus, colloquially known as the yellow shadow ant and yellow lawn ant, is a Palearctic species of parasitic ant distributed across Eurasia and the Maghreb region of Africa. It was once thought that this species occurred in North America as well, but comparative genomic studies indicate the Afro-Eurasian and American populations are discrete and not closely related enough to represent a single species. The North American populations are now treated as a different species, Lasius aphidicola.

<span class="mw-page-title-main">Black bean aphid</span> Species of true bug

The black bean aphid is a small black insect in the genus Aphis, with a broad, soft body, a member of the order Hemiptera. Other common names include blackfly, bean aphid, and beet leaf aphid. In the warmer months of the year, it is found in large numbers on the undersides of leaves and on the growing tips of host plants, including various agricultural crops and many wild and ornamental plants. Both winged and wingless forms exist, and at this time of year, they are all females. They suck sap from stems and leaves and cause distortion of the shoots, stunted plants, reduced yield, and spoiled crops. This aphid also acts as a vector for viruses that cause plant disease, and the honeydew it secretes may encourage the growth of sooty mould. It breeds profusely by live birth, but its numbers are kept in check, especially in the later part of the summer, by various predatory and parasitic insects. Ants feed on the honeydew it produces, and take active steps to remove predators. It is a widely distributed pest of agricultural crops and can be controlled by chemical or biological means. In the autumn, winged forms move to different host plants, where both males and females are produced. These mate and the females lay eggs which overwinter.

<i>Bombus fervidus</i> Species of bee

Bombus fervidus, the golden northern bumble bee or yellow bumblebee, is a species of bumblebee native to North America. It has a yellow-colored abdomen and thorax. Its range includes the North American continent, excluding much of the southern United States, Alaska, and the northern parts of Canada. It is common in cities and farmland, with populations concentrated in the Northeastern part of the United States. It is similar in color and range to its sibling species, Bombus californicus, though sometimes also confused with the American bumblebee or black and gold bumblebee. It has complex behavioral traits, which includes a coordinated nest defense to ward off predators. B. fervidus is an important pollinator, so recent population decline is a particular concern.

<i>Polistes metricus</i> Species of wasp

Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. P. metricus is dark colored, with yellow tarsi and black tibia. Nests of P. metricus can be found attached to the sides of buildings, trees, and shrubbery.

<i>Leptanilla japonica</i> Species of ant

Leptanilla japonica is an uncommon highly migratory, subterranean ant found in Japan. They are tiny insects, with workers measuring about 1.2 mm and queens reaching to about 1.8 mm, and live in very small colonies of only a few hundred individuals at a time Its sexual development follows a seasonal cycle that affects the colony's migration and feeding habits, and vice versa. L. japonica exhibits specialized predation, with prey consisting mainly of geophilomorph centipedes, a less reliable food source that also contributes to their high rate of nest migration. Like ants of genera Amblyopone and Proceratium, the genus Leptanilla engages in larval hemolymph feeding (LHF), with the queen using no other form of sustenance. LHF is an advantageous alternative to the more costly cannibalism. Unlike any other ant, however, members of Leptanilla, including L. japonica, have evolved a specialized organ dubbed the “larval hemolymph tap” that reduces the damage LHF inflicts on the larvae. LHF has become this species' main form of nutrition.

<i>Lasius alienus</i> Species of ant

Lasius alienus, or cornfield ant, is a species of ant in the subfamily Formicinae. Workers have a length of about 2–4 mm, Queens are larger (7–9 mm).

<i>Lasius fuliginosus</i> Species of ant

Lasius fuliginosus, also known as the jet ant or jet black ant, is a species of ant in the subfamily Formicinae.

<i>Myrmecocystus mexicanus</i> Species of ant

Myrmecocystus mexicanus is a species of ant in the genus Myrmecocystus, which is one of the six genera that bear the common name "honey ant" or "honeypot ant", due to curious behavior where some of the workers will swell with liquid food until they become immobile and hang from the ceilings of nest chambers, acting as living food storage for the colony. Honey ants are found in North America, Australia, and Africa. Ant species belonging to the genus Myrmecocystus reside in North America. M. mexicanus in particular is found in the southwestern United States and parts of Mexico.

<i>Formica pallidefulva</i> Species of ant

Formica pallidefulva is a species of ant found in North America. It is a red to dark brown ant with a shiny body, and varies in shade across its range. Colonies of this ant are found in a variety of habitats, where they excavate underground nests with galleries and chambers. In some parts of its range, the nests may be raided by slave-making ants, most notably Formica pergandei and Polyergus montivagus.

Protopolybia exigua is a species of vespid wasp found in South America and Southern Brazil. These neotropical wasps, of the tribe Epiponini, form large colonies with multiple queens per colony. P. exigua are small wasps that find nourishment from nectar and prey on arthropods. Their nests are disc-shaped and hang from the undersides of leaves and tree branches. This particular species of wasp can be hard to study because they frequently abandon their nests. P. exigua continuously seek refuge from phorid fly attacks and thus often flee infested nests to build new ones. The wasps' most common predators are ants and the parasitoid phorid flies from the Phoridae family.

References

  1. Klotz, John H. (2008). Urban Ants of North America and Europe: Identification, Biology, and Management. Cornell University Press. pp. 39–44. ISBN   978-0801474736.
  2. 1 2 3 Lucas ER, Privman E, Keller L (2016). "Higher expression of somatic repair genes in long-lived ant queens than workers". Aging. 8 (9): 1940–1951. doi:10.18632/aging.101027. PMC   5076446 . PMID   27617474.
  3. 1 2 Kramer, Boris H.; Schaible, Ralf; Scheuerlein, Alexander (December 2016). "Worker lifespan is an adaptive trait during colony establishment in the long-lived ant Lasius niger". Experimental Gerontology. 85: 18–23. doi: 10.1016/j.exger.2016.09.008 . PMID   27620822.
  4. Czaczkes, T. J. (2017). "unpublished data".{{cite journal}}: Cite journal requires |journal= (help)
  5. "Contents for Teacher Overview: Why ants are so successful and Mating". Archived from the original on 2010-09-24. Retrieved 2010-08-14.
  6. 1 2 3 Gitig, Diana (November 26, 2018). "Sick ants stay away from the kids". Ars Technica. Retrieved November 27, 2018.
  7. Banks, C. J. (1962). "Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae Scop. on bean plants". Annals of Applied Biology. 50 (4): 669–679. doi:10.1111/j.1744-7348.1962.tb06067.x.
  8. Banks, C. J.; Macaulay, E. D. M. (1967). "Effects of Aphis fabae Scop, and of its attendant ants and insect predators on yields of field beans (Vicia faba L.)". Annals of Applied Biology. 60 (3): 445–453. doi:10.1111/j.1744-7348.1967.tb04499.x.
  9. Engel, Volker; Fischer, Melanie K.; Wäckers, Felix L.; Völkl, Wolfgang (December 2001). "Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?". Oecologia. 129 (4): 577–584. Bibcode:2001Oecol.129..577E. doi:10.1007/s004420100765. PMID   24577698. S2CID   7363980.
  10. 1 2 3 4 5 Seymour, Adrian S.; Gutiérrez, David; Jordano, Diego (2003-10-01). "Dispersal of the lycaenid Plebejus argus in response to patches of its mutualist ant Lasius niger". Oikos. 103 (1): 162–174. Bibcode:2003Oikos.103..162S. doi: 10.1034/j.1600-0706.2003.12331.x . ISSN   1600-0706.
  11. 1 2 3 4 Jordano, D.; Rodríguez, J.; Thomas, C. D.; Haeger, J. Fernández (1992-09-01). "The distribution and density of a lycaenid butterfly in relation to Lasius ants". Oecologia. 91 (3): 439–446. Bibcode:1992Oecol..91..439J. doi:10.1007/bf00317635. ISSN   0029-8549. PMID   28313554. S2CID   24595419.