Sclerodermatineae

Last updated

Sclerodermatineae
Scleroderma cepa.jpg
Scleroderma cepa
Scientific classification Red Pencil Icon.png
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Boletales
Suborder: Sclerodermatineae
Manfr.Binder & Bresinsky (2002)
Families

Sclerodermatineae is a suborder of the fungal order Boletales. Circumscribed in 2002 by mycologists Manfred Binder and Andreas Bresinsky, it contains nine genera and about 80 species. The suborder contains a diverse assemblage fruit body morphologies, including boletes, gasteroid forms, earthstars (genus Astraeus ), and puffballs. Most species are ectomycorrhizal, although the ecological role of some species is not known with certainty. The suborder is thought to have originated in the late Cretaceous (145–66  Ma) in Asia and North America, and the major genera diversified around the mid Cenozoic (66–0 Ma).

Contents

Taxonomy

The Sclerodermatineae was first legitimately used by Manfred Binder and Andreas Bresinsky in 2002 based on molecular analyses of nuclear ribosomal large subunit (25S) rRNA sequences from 60 species of Boletales. This research was an extension of Binder's 1999 graduate work, in which he argued for the need to recognize the molecular differences of the sclerodermatoid fungi. [1] Sclerodermatineae is one of six lineages of the Boletales recognized as a suborder; the others are the Boletineae, Paxillineae, Suillineae, Tapinellineae, and Coniophorineae. Of the nine genera assigned to the Sclerodermatineae, three are hymenomycetes ( Boletinellus , Gyroporus , and Phlebopus ), and six are gasteroid ( Astraeus , Calostoma , Diplocystis , Pisolithus , and Scleroderma ). [2] Since the suborder's original description, there have been several phylogenetic studies investigating the Sclerodermatineae. [3] [4] Some studies have revealed the existence of numerous cryptic species and have contributed to taxonomic expansion of the group. [5] [6] [7] The "core" Sclerodermatineae include the genera Astraeus, Calostoma, Scleroderma, Pisolithus, Diplocystis, Tremellogaster (all gasteroid), and the boletoid genus Gyroporus; Phlebopus and Boletinellus resolved as sister to this core group. [8]

As of 2012, there are an estimated 78 species in the Sclerodermatineae. [lower-alpha 1] The type of the suborder is the family Sclerodermataceae; other families in the suborder are the Boletinellaceae, Diplocystaceae, and the Gyroporaceae. [2]

Based on ancestral reconstruction studies, the earliest (basal) members of the Sclerodermatineae originated in the late Cretaceous (145–66  Ma). The major genera diversified near the mid Cenozoic (66–0 Ma). Asia and North America are the most probable ancestral areas for all Sclerodermatineae, and Pinaceae and angiosperms (primarily rosids) are the most probable ancestral hosts. [8]

Description

Members of the Sclerodermatineae have fruit body shapes ranging from boletoid (with a cap, stipe, and tubes on the underside of the cap) to gasteroid. Boletoid fruit bodies sometimes have hollow stipes with a surface that is smooth to somewhat furfuraceous (covered with flaky particles), and lack the reticulation (a net-like pattern of interlacing lines) characteristic of some members of the Boletaceae. The pores are merulioid (wrinkled with low, uneven ridges), boletinoid, and either fine or coarse. The flesh is usually whitish to yellowish, and some species exhibit a blue staining reaction upon injury. In mass, spores are yellow; microscopically, the spores are ellipsoid in shape and have a smooth surface. [2]

Gasteroid fruit body types are either roughly spherical or tuberous, occasionally with stipes, and usually have a peridium that is either simple or multi-layered. Mature gasteroid fruit bodies generally open irregularly at maturity to expose a powdery gleba with a color ranging from white to yellow or black-brown to black. Capillitia are generally absent from the gleba. Spores are spherical or nearly so, and have a surface texture that ranges from smooth to wart-like and spiny, or sometimes with reticulations. Hyphae have clamp connections. [2]

Morphological diversity

Examples of the morphological diversity of the Sclerodermatineae

A distinguishing feature of the Sclerodermatineae is the diversity of morphologies within the group. The hymenomycete genera Boletinellus, Gyroporus, and Phlebopus are typical boletes with a cap and stipe. However, each of the gasteroid Sclerodermatineae has a distinct morphology. Species of Astraeus have an "earthstar" morphology where the outer peridium peels back in sections. The gleba of Pisolithus is partitioned into hundreds of membranous chambers. Scleroderma is a simple puffball with a thin outer skin and a powdery gleba at maturity. Diplocystis and Tremellogaster are each distinct in their morphologies: the former comprises compound fruit bodies each with 3–60 spore sacs crowded together, [21] while the latter forms a roughly spherical sporocarp with a thick multi-layered peridium. [22] Calostoma (Greek for "pretty mouth") is morphologically distinct from other gasteroid members, having a fruit body that forms a globed, spore-bearing head composed of a three-layered peridium. [21] About two-thirds of Sclerodermatineae species have a gasteroid morphology, although this may be an underestimate due to the existence of cryptic species that have yet to be formally described. [23] For example, studies of the gasteroid genera Astraeus and Pisolithus indicate the existence of numerous cryptic taxa. [5] [7]

Ecology

The mycorrhizal associations of several Sclerodermatineae genera have been established. Studies have demonstrated that Astraeus, Pisolithus, and Scleroderma form ectomycorrhizal associations with both angiosperms and gymnosperms. [8] Previously thought to be saprophytic, the Calostomataceae were determined to be ectomycorrhizal with Fagaceae and Myrtaceae using isotopic and molecular analyses. [24] Species from the genera Pisolithus and Scleroderma have been used in forestry as mycorrhizal inocula to help promote the growth and vigor of young seedlings. [1]

As a group, the Sclerodermatineae have a broad distribution, and some genera (Pisolithus and Scleroderma) have been found on all continents except Antarctica. [8]

Notes

  1. This tally does not include the poorly known genera Endogonopsis, Chlorogaster, Favillea, and Horakiella. [8]

Related Research Articles

Puffball Puffball

Puffballs are fungi, so named because clouds of brown dust-like spores are emitted when the mature fruitbody bursts or is impacted. Puffballs are in the division Basidiomycota and encompass several genera, including Calvatia, Calbovista and Lycoperdon. True puffballs do not have a visible stalk or stem. The puffballs were previously treated as a taxonomic group called the Gasteromycetes or Gasteromycetidae, but they are now known to be a polyphyletic assemblage.

Secotioid Type of fungi

Secotioid fungi are an intermediate growth form between mushroom-like hymenomycetes and closed bag-shaped gasteromycetes, where an evolutionary process of gasteromycetation has started but not run to completion. Secotioid fungi may or may not have opening caps, but in any case they often lack the vertical geotropic orientation of the hymenophore needed to allow the spores to be dispersed by wind, and the basidiospores are not forcibly discharged or otherwise prevented from being dispersed —note—some mycologists do not consider a species to be secotioid unless it has lost ballistospory.

<span class="mw-page-title-main">Boletales</span> Order of fungi

The Boletales are an order of Agaricomycetes containing over 1300 species with a diverse array of fruiting body types. The boletes are the best known members of this group, and until recently, the Boletales were thought to only contain boletes. The Boletales are now known to contain distinct groups of agarics, gasteromycetes, and other fruiting-body types.

Sclerodermataceae Family of fungi

The Sclerodermataceae are a family of fungi in the order Boletales, containing several genera of unusual fungi that little resemble boletes. Taxa, which include species commonly known as the ‘hard-skinned puffballs’, ‘earthballs’, or 'earthstars', are widespread in both temperate and tropical regions. The best known members include the earthball Scleroderma citrinum, the dye fungus Pisolithus tinctorius and the 'prettymouths' of the genus Calostoma.

<i>Scleroderma</i> (fungus) Genus of fungi

Scleroderma is a genus of fungi, commonly known as earth balls, now known to belong to the Boletales order, in suborder Sclerodermatineae. The best known species are S. citrinum and S. verrucosum. They are found worldwide. Various members of this genus are used as inoculation symbionts to colonize and promote the growth of tree seedlings in nurseries. They are not edible.

Hydnangiaceae Family of fungi

The Hydnangiaceae are a family of fungi in the mushroom order Agaricales. Widespread in temperate and tropical regions throughout the world, the family contains about 30 species in four genera. Species in the Hydnangiaceae form ectomycorrhizal relationships with various species of trees in both coniferous and deciduous forests.

<i>Calostoma</i> Genus of fungi

Calostoma is a genus of 29 species of gasteroid fungi in the suborder Sclerodermatineae. Like other gasteroid fungi, Calostoma do not have the spore discharge mechanism associated with typical gilled fungi (ballistospory), and instead have enclosed spore-bearing structures. Resembling round puffballs with raised, brightly-colored spore openings (osteoles), elevated on a thick, gelatinous stalks, species have been collected in regions of deciduous, temperate, tropical or subtropical forests. Their distribution includes eastern North America, Central America, Asia, and Australasia. The common name given to some species, "prettymouth", alludes to the brightly-colored raised openings (osteoles) that may somewhat resemble lips. Other common names include "hotlips" and "puffball in aspic".

<i>Chalciporus</i> Genus of fungi

Chalciporus is a genus of fungi in the family Boletaceae. There are approximately 25 species in the genus.

<i>Astraeus</i> (fungus) Genus of fungi

Astraeus is a genus of fungi in the family Diplocystaceae. The genus, which has a cosmopolitan distribution, contains nine species of earthstar mushrooms. They are distinguished by the outer layer of flesh (exoperidium) that at maturity splits open in a star-shape manner to reveal a round spore sac. Additionally, they have a strongly hygroscopic character—the rays will open when moist, but when hot and dry will close to protect the spore sac. Species of Astraeus grow on the ground in ectomycorrhizal associations with trees and shrubs.

Limnoperdon is a fungal genus in the monotypic family Limnoperdaceae. The genus is also monotypic, as it contains a single species, the aquatic fungus Limnoperdon incarnatum. The species, described as new to science in 1976, produces fruit bodies that lack specialized structures such as a stem, cap and gills common in mushrooms. Rather, the fruit bodies—described as aquatic or floating puffballs—are small balls of loosely interwoven hyphae. The balls float on the surface of the water above submerged twigs. Experimental observations on the development of the fruit body, based on the growth on the fungus in pure culture, suggest that a thin strand of mycelium tethers the ball above water while it matures. Fruit bodies start out as a tuft of hyphae, then become cup-shaped, and eventually enclose around a single chamber that contains reddish spores. Initially discovered in a marsh in the state of Washington, the fungus has since been collected in Japan, South Africa, and Canada.

<i>Pisolithus</i> Genus of fungi

Pisolithus is a genus of fungi within the family Sclerodermataceae. The type species, P. arenarius, is now known to be synonymous with P. arhizus.

<i>Hygrophoropsis</i> Genus of fungi

Hygrophoropsis is a genus of gilled fungi in the family Hygrophoropsidaceae. It was circumscribed in 1888 to contain the type species, H. aurantiaca, a widespread fungus that, based on its appearance, has been affiliated with Cantharellus, Clitocybe, and Paxillus. Modern molecular phylogenetic analysis shows that the genus belongs to the suborder Coniophorineae of the order Boletales.

<i>Calbovista</i> Genus of fungi

Calbovista is a fungal genus containing the single species Calbovista subsculpta, commonly known as the sculptured puffball, sculptured giant puffball, and warted giant puffball. It is a common puffball of the Rocky Mountains and Pacific Coast ranges of western North America. The puffball is more or less round with a diameter of up to 15 cm (6 in), white becoming brownish in age, and covered with shallow pyramid-shaped plates or scales. It fruits singly or in groups along roads and in open woods at high elevations, from summer to autumn.

<i>Durianella</i> Genus of fungi

Durianella is a fungal genus in the suborder Boletineae, family Boletaceae of the order Boletales. It contains the single species Durianella echinulata, described in 2008 and found in Peninsular Malaysia and Borneo.

Gasteroid fungi Group of fungi

The gasteroid fungi are a group of fungi in the Basidiomycota. Species were formerly placed in the obsolete class Gasteromycetes Fr., or the equally obsolete order Gasteromycetales Rea, because they produce spores inside their basidiocarps rather than on an outer surface. However, the class is polyphyletic, as such species—which include puffballs, earthstars, stinkhorns, and false truffles—are not closely related to each other. Because they are often studied as a group, it has been convenient to retain the informal (non-taxonomic) name of "gasteroid fungi".

<i>Podoserpula</i> Genus of fungi

Podoserpula is a genus of fungi in the family Amylocorticiaceae. The genus contains two species: the type, P. pusio, commonly known as the pagoda fungus, and the "Barbie pagoda", P. miranda, officially published in 2013. Podoserpula species produce fruit bodies consisting of up to a dozen caps arranged in overlapping shelves, attached to a central axis. Its unique shape is not known to exist in any other fungi. Four varieties of P. pusio are known, which differ in their sizes, spore morphology, and distribution. The genus is known to occur in Australia and New Zealand, Venezuela, Madagascar, and New Caledonia.

Nidulariaceae Family of fungi

The Nidulariaceae are a family of fungi in the order Agaricales. Commonly known as the bird's nest fungi, their fruiting bodies resemble tiny egg-filled birds' nests. As they are saprobic, feeding on decomposing organic matter, they are often seen growing on decaying wood and in soils enriched with wood chips or bark mulch; they have a widespread distribution in most ecological regions. The five genera within the family, namely, Crucibulum, Cyathus, Mycocalia, Nidula, and Nidularia, are distinguished from each other by differences in morphology and peridiole structure; more recently, phylogenetic analysis and comparison of DNA sequences is guiding new decisions in the taxonomic organization of this family.

Amylocorticiales Order of fungi

Amylocorticiales is an order of fungi in the class Agaricomycetes. The order was circumscribed in 2010 to contain mostly resupinate (crust-like) forms that have been referred to genera Anomoporia, Amyloathelia, Amylocorticiellum, Amylocorticium, Amyloxenasma, Anomoloma, Athelia, Athelopsis, Ceraceomyces, Hypochniciellum, Leptosporomyces and Serpulomyces.

<i>Scleroderma verrucosum</i> Species of fungus

Scleroderma verrucosum is a basidiomycete fungus and a member of the genus Scleroderma, or "earth balls". First described scientifically in 1791, the species has a cosmopolitan distribution, and grows in the ground in nutrient-rich, sandy soils.

<i>Calostoma cinnabarinum</i> Species of fungus

Calostoma cinnabarinum is a species of gasteroid fungus in the family Sclerodermataceae, and is the type species of the genus Calostoma. It is known by several common names, including stalked puffball-in-aspic and gelatinous stalked-puffball. The fruit body has a distinctive color and overall appearance, featuring a layer of yellowish jelly surrounding a bright red, spherical head approximately 2 centimeters (0.8 in) in diameter atop a red or yellowish brown spongy stipe 1.5 to 4 cm tall. The innermost layer of the head is the gleba, containing clear or slightly yellowish elliptical spores, measuring 14–20 micrometers (µm) long by 6–9 µm across. The spore surface features a pattern of small pits, producing a net-like appearance. A widely distributed species, it grows naturally in eastern North America, Central America, northeastern South America, and East Asia. C. cinnabarinum grows on the ground in deciduous forests, where it forms mycorrhizal associations with oaks.

References

  1. 1 2 Watling R. (2006). "The sclerodermatoid fungi". Mycoscience. 47: 18–24. doi:10.1007/s10267-005-0267-3. S2CID   84649900.
  2. 1 2 3 4 Binder M, Bresinsky A (2002). "Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors". Mycologia. 94 (1): 85–98. doi:10.2307/3761848. JSTOR   3761848. PMID   21156480.
  3. Binder M, Hibbett DS (2006). "Molecular systematics and biological diversification of Boletales". Mycologia. 98 (6): 971–83. doi:10.3852/mycologia.98.6.971. JSTOR   3761848. PMID   17486973. Open Access logo PLoS transparent.svg
  4. Louzan R, Wilson AW, Binder M, Hibbett DS (2007). "Phylogenetic placement of Diplocystis wrightii in the Sclerodermatineae". Mycoscience. 48 (1): 66–9. doi:10.1007/s10267-006-0325-5. S2CID   6941263.
  5. 1 2 Martin F, Diez J, Dell B, Delaruelle C (2002). "Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences" (PDF). New Phytologist. 153 (2): 345–57. doi: 10.1046/j.0028-646X.2001.00313.x .
  6. Læssøe T, Jalink LM (2004). "Chlorogaster dipterocarpi: A new peristomate gasteroid taxon of the Sclerodermataceae". Persoonia. 18 (3): 421–8.
  7. 1 2 3 Phosri C, Martín MP, Sihanonth P, Whalley AJS, Watling R (2007). "Molecular study of the genus Astraeus". Mycological Research. 111 (3): 275–86. doi:10.1016/j.mycres.2007.01.004. PMID   17360168.
  8. 1 2 3 4 5 Wilson AW, Binder M, Hibbett DS (2012). "Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota)". New Phytologist. 194 (4): 1079–95. doi: 10.1111/j.1469-8137.2012.04109.x . PMID   22471405.
  9. Kirk et al. (2008), p. 97
  10. Kirk et al. (2008), p. 522
  11. Kirk et al. (2008), p. 212
  12. Kirk et al. (2008), p. 233
  13. Kirk et al. (2008), p. 697
  14. Kirk et al. (2008), p. 299
  15. Kirk et al. (2008), p. 112
  16. Kirk et al. (2008), p. 137
  17. Kirk et al. (2008), p. 254
  18. Kirk et al. (2008), p. 320
  19. Kirk et al. (2008), p. 539
  20. Kirk et al. (2008), p. 622
  21. 1 2 Miller HR, Miller OK (1988). Gasteromycetes: Morphological and Developmental Features, with Keys to the Orders, Families, and Genera. Eureka, California: Mad River Press. ISBN   0-916422-74-7.
  22. Linder DH. (1930). "Notes of Tremellogaster surinamensis". Mycologia. 22 (6): 265–70. doi:10.2307/3753895. JSTOR   3753895.
  23. Wilson AW, Binder M, Hibbett DS (2011). "Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis". Evolution. 65 (5): 1305–22. doi:10.1111/j.1558-5646.2010.01214.x. PMID   21166793. S2CID   38602762.
  24. Wilson AW, Hobbie EA, Hibbett DS (2007). "The ectomycorrhizal status of Calostoma cinnabarinum determined using isotopic, molecular, and morphological methods" (PDF). Canadian Journal of Botany. 85 (4): 385–93. doi:10.1139/B07-026.

Cited literature