Steneotarsonemus spinki

Last updated

Steneotarsonemus spinki
Steneotarsonemus spinki 1.jpg
Adults and eggs
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Class: Arachnida
Order: Trombidiformes
Family: Tarsonemidae
Genus: Steneotarsonemus
Species:
S. spinki
Binomial name
Steneotarsonemus spinki
Smiley, 1967

Steneotarsonemus spinki, the panicle rice mite, [1] spinki mite, or rice tarsonemid mite, [2] is a species of mite in the family Tarsonemidae, the white mites. It is a serious pest of rice in tropical Asia, Central America, and the Caribbean.

Contents

Identification

The panicle rice mite is not visible to the naked eye. A minimum 20× hand lens is required to observe it on the inside of the leaf sheath. The mites are clear to straw-colored and are approximately 250 µm in length. The male has elongated rear legs containing a pair of elongated spines. The legs are carried above the body. Males are highly active and can be seen moving on the surface of the leaf. Females are ovoid-shaped. Larval stages, as well as eggs are about half the size of adults.

Life history

Panicle rice mites are parthenogenetic (virgin females can produce male offspring). The female will then mate with the male offspring and produce eggs. A mated female produces an average of 55 eggs in her lifetime. The lifecycle in the laboratory can vary from 3 days at 86 °F (30 °C) to 20 days at 68 °F (20 °C). If held in the laboratory at 17.6 °F (−8.0 °C) for 72 hours, all panicle rice mites will die.

High temperatures and low rainfall are ideal for development of large populations of panicle rice mites in the field. Continuous rice culture and the sharing of equipment between fields is also conducive to building damaging populations of the mites.

Distribution

Female and male rice mites Steneotarsonemus spinki 1 male female.jpg
Female and male rice mites

The mite has been extremely destructive in rice fields of tropical regions of Asia, particularly in China and Taiwan, and in and Central America. The mite has wiped out commercial rice fields in the Caribbean region.

The panicle rice mite was first introduced into the United States in 2007, and has been found in Louisiana, Arkansas, Texas, Ohio and New York. [3] Until the discovery at UC Davis, it had never been identified in California or elsewhere in the western United States. On 13 July 2007, the United States Department of Agriculture confirmed the presence the panicle rice mite at a rice research facility in Alvin, Brazoria County, Texas. Other interceptions of this pest have also been reported at greenhouses in Ohio and Texas within the last 10 years. [4]

In January 2009, officials at 11 University of California Davis greenhouses discovered panicle rice mite contamination. [5] Although panicle rice mites are not thought to have the ability to thrive in the temperate climate of the United States, the area of southwest Louisiana has a sub-tropical climate with both high temperature and high humidity. [6]

Panicle rice mites thrive under both of these conditions and may cause substantial economic losses when found in association with Burkholderia glumae (bacterial panicle blight) and Sarocladium oryzae (sheath rot) pathogens. These pathogens are both present in southwest Louisiana.

Host plants

Panicle rice mites are pests of commercial rice ( Oryza sativa ), and completes its development on the invasive plant Oryza latifolia .

Damage

Rice plant infested with panicle rice mites Steneotarsonemus spinki damage.jpg
Rice plant infested with panicle rice mites

Feeding takes place behind the leaf sheath. The feeding lesion can be detected by cinnamon to chocolate-brown discoloration of the leaf sheath. When a new leaf begins development, a female will move to the new leaf sheath, produce male offspring and then establish a new feeding lesion. Thus, damage will often be observed on interior sheaths when the outer sheath is removed. This continues until the mite reaches the leaf nearest the stem. They also feed on developing panicles from the boot stage to the milk stage of heading.

Panicle rice mites cause damage to plants by directly feeding on leaf tissue in the leaf sheath and developing grains at the milk stage, and indirectly, by transmitting fungal pathogens. During feeding, they inject a toxic saliva. The mites have been associated with sheath rot as well as bacterial panicle blight. The mites can carry sheath rot spores on their body.

The mites cause damage to plant tissue which may facilitate entry of fungal pathogens into developing grains and the leaf sheath. This damage to grains results in sterility and deformed grains, straight-head, and parrot-beaking of grains. [5]

Crop losses ranging from 5% – 90% have been attributed to panicle rice mites in a number of countries.

In the Americas, however, it has caused the largest economic impact. In Central America it has caused yield losses ranging from 30% to 90%.

Management

Chemical

Chemical controls are usually not efficacious because the mites remain present in a water-sealed area of the plant—behind the leaf sheath and near the stem. Thus, systemic miticides may be the best option for chemical control.

Biological

Fungal pathogens and predatory mites may have the ability to suppress populations.

Cultural

Cultural controls include plowing stubble after harvesting crops, as well as ensuring no re-growth of plant material for winter, fallowing fields, rotation with an alternate crop, cleaning machinery before use in an un-infested field, sampling two weeks after planting to catch mite populations at low levels, and avoidance of second-cropping.

These cultural control methods as well as breeding for resistance have successfully suppressed populations in some infested countries.

Related Research Articles

<span class="mw-page-title-main">Rice</span> Cereal (Oryza sativa)

Rice is a cereal grain, and in its domesticated form is the staple food for over half of the world's human population, particularly in Asia and Africa, due to the vast amount of soil that is able to grow rice. Rice is the seed of the grass species Oryza sativa or, much less commonly, O. glaberrima. Asian rice was domesticated in China some 13,500 to 8,200 years ago, while African rice was domesticated in Africa some 3,000 years ago. Rice has become commonplace in many cultures worldwide; in 2021, 787 million tons were produced, placing it fourth after sugarcane, maize, and wheat. Only some 8% of rice is traded internationally. China, India, and Indonesia are the largest consumers of rice. A substantial amount of the rice produced in developing nations is lost after harvest through factors such as poor transport and storage. Rice yields can be reduced by pests including insects, rodents, and birds, as well as by weeds, and by diseases such as rice blast. Traditional polycultures such as rice-duck farming, and modern integrated pest management seek to control damage from pests in a sustainable way.

<span class="mw-page-title-main">Biological pest control</span> Controlling pests using other organisms

Biological control or biocontrol is a method of controlling pests, whether pest animals such as insects and mites, weeds, or pathogens affecting animals or plants by using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

<span class="mw-page-title-main">Pest (organism)</span> Organism harmful to humans/our concerns

A pest is any organism harmful to humans or human concerns. The term is particularly used for creatures that damage crops, livestock, and forestry or cause a nuisance to people, especially in their homes. Humans have modified the environment for their own purposes and are intolerant of other creatures occupying the same space when their activities impact adversely on human objectives. Thus, an elephant is unobjectionable in its natural habitat but a pest when it tramples crops.

<i>Tetranychus urticae</i> Species of mite

Tetranychus urticae is a species of plant-feeding mite generally considered to be a pest. It is the most widely known member of the family Tetranychidae or spider mites. Its genome was fully sequenced in 2011, and was the first genome sequence from any chelicerate.

<i>Magnaporthe grisea</i> Blast, fungal disease of rice & wheat

Magnaporthe grisea, also known as rice blast fungus, rice rotten neck, rice seedling blight, blast of rice, oval leaf spot of graminea, pitting disease, ryegrass blast, Johnson spot, neck blast, wheat blast and Imochi (稲熱), is a plant-pathogenic fungus and model organism that causes a serious disease affecting rice. It is now known that M. grisea consists of a cryptic species complex containing at least two biological species that have clear genetic differences and do not interbreed. Complex members isolated from Digitaria have been more narrowly defined as M. grisea. The remaining members of the complex isolated from rice and a variety of other hosts have been renamed Magnaporthe oryzae, within the same M. grisea complex. Confusion on which of these two names to use for the rice blast pathogen remains, as both are now used by different authors.

<span class="mw-page-title-main">Silverleaf whitefly</span> Species of true bug

The silverleaf whitefly is one of several species of whitefly that are currently important agricultural pests. A review in 2011 concluded that the silverleaf whitefly is actually a species complex containing at least 40 morphologically indistinguishable species.

<span class="mw-page-title-main">Tarsonemidae</span> Family of mites

Tarsonemidae is a family of mites, also called thread-footed mites or white mites.

<i>Cochliobolus miyabeanus</i> Species of fungus

Cochliobolus miyabeanus is a fungus that causes brown spot disease in rice.

<i>Polyphagotarsonemus latus</i> Species of mite

The broad mite, Polyphagotarsonemus latus, is a microscopic species of mite found on many species of plants, spanning 60 families including important agricultural species such as cotton, soybean, blackberries, strawberries, peppers, and other fruits. Broad mites are also currently affecting cannabis plants, as the industry matures with legalization. The mites are found in many areas worldwide and are major greenhouse pests.

<i>Tarsonemus</i> Genus of mites

Tarsonemus is a genus of trombidiform mites within the family Tarsonemidae.

<i>Penicillium funiculosum</i> Species of fungus

Penicillium funiculosum is a plant pathogen infecting pineapples.

<i>Sarocladium oryzae</i> Species of fungus

Sarocladium oryzae (Sawada) is a plant pathogen causing the Sheath rot disease of rice and Bamboo blight of Bambusoideae spp. in Asia.

Magnaporthe salvinii is a fungus known to attack a variety of grass and rice species, including Oryza sativa and Zizania aquatica. Symptoms of fungal infection in plants include small, black, lesions on the leaves that develop into more widespread leaf rot, which then spreads to the stem and causes breakage. As part of its life cycle, the fungus produces sclerotia that persist in dead plant tissue and the soil. Management of the fungus may be effected by tilling the soil, reducing its nitrogen content, or by open field burning, all of which reduce the number of sclerotia, or by the application of a fungicide.

<i>Abacarus hystrix</i> Species of mite

Abacarus hystrix, the cereal rust mite or grain rust mite, belongs to the family Eriophyidae. They are extremely small with adults measuring up to 1 millimetre in length and only have four legs at the front of the body. Viewing by the human eye requires a 10 – 20X lens. The adult mites are usually yellow but also have been seen to be white or orange. The cereal rust mite was first found on Elymus repens, a very common perennial grass species. It has now been found on more than 60 grass species including oats, barley, wheat and ryegrass, found in Europe, North America, South Africa and Australia. Mites migrate primarily through wind movement and are usually found on the highest basal sections of the top two leaf blades. Abacarus hystrix produces up to twenty overlapping generations per year in South Australian perennial pastures, indicating that the species breeds quite rapidly. It has been noted that the cereal rust mite can cause losses in yield of up to 30-70%.

<i>Raoiella indica</i> Species of mite

Raoiella indica, commonly known as the red palm mite, is a species of mite belonging to the family Tenuipalpidae. A pest of several species of palm in the Middle East and South East Asia, it is now becoming established throughout the Caribbean. The invasion of this species is the biggest mite explosion ever observed in the Americas.

Plant Protection and Quarantine (PPQ) is one of six operational program units within the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA). The PPQ works to safeguard agriculture and natural resources in the U.S. against the entry, establishment, and spread of animal and plant pests, and noxious weeds in order to help ensure the protection of native flora and an abundant, high-quality, and varied food supply.

<span class="mw-page-title-main">Citrus black spot</span> Fungal disease that affects citrus fruit

Citrus black spot is a fungal disease caused by Phyllosticta citricarpa(previously known as Guignardia citricarpa). This Ascomycete fungus affects citrus plants throughout subtropical climates, causing a reduction in both fruit quantity and quality.

<i>Setaria palmifolia</i> Species of grass

Setaria palmifolia is a species of grass known by the common names palmgrass, highland pitpit, hailans pitpit, short pitpit, broadleaved bristlegrass, and knotroot. In Spanish it is called pasto de palma and in Samoan vao 'ofe 'ofe. It is native to temperate and tropical Asia. It is known elsewhere as an introduced, and often invasive, species, including in Australia, New Zealand, many Pacific Islands, and the Americas.

<i>Oligonychus</i> Genus of mites

Oligonychus is a genus of mites in the family Tetranychidae, the spider mites. Many members of this genus are familiar pests of plants. There are about 200 described species.

Bacterial leaf streak (BLS), also known as black chaff, is a common bacterial disease of wheat. The disease is caused by the bacterial species Xanthomonas translucens pv. undulosa. The pathogen is found globally, but is a primary problem in the US in the lower mid-south and can reduce yields by up to 40 percent.[6] BLS is primarily seed-borne and survives in and on the seed, but may also survive in crop residue in the soil in the off-season. During the growing season, the bacteria may transfer from plant to plant by contact, but it is primarily spread by rain, wind and insect contact. The bacteria thrives in moist environments, and produces a cream to yellow bacterial ooze, which, when dry, appears light colored and scale-like, resulting in a streak on the leaves. The invasion of the head of wheat causes bands of necrotic tissue on the awns, which is called Black Chaff.[14] The disease is not easily managed, as there are no pesticides on the market for treatment of the infection. There are some resistant cultivars available, but no seed treatment exists. Some integrated pest management (IPM) techniques may be used to assist with preventing infection although, none will completely prevent the disease.[2]

References

  1. J.-Z. Lin & Z.-Q. Zhang (2005). "New Zealand species of Steneotarsonemus Beer (Acari: Tarsonemidae)" (PDF). Zootaxa . 1028: 1–22.
  2. "panicle rice mite, Steneotarsonemus spinki (Acari: Tarsonemidae)". Ipmimages.org. 4 May 2010. Retrieved 22 July 2012.
  3. "Detections of Panicle Rice Mite, Steneotarsonemus spinki, in Stuttgart, Arkansas and Ithaca, New York – United States". Phytosanitary Alert System. North American Plant Protection Organization. 18 September 2007.
  4. "Panicle rice mite (Steneotarsonemus spinki)". United States Department of Agriculture. 26 February 2009.
  5. 1 2 Karen Massie (28 February 2009). "Devastating rice mite found in UCD greenhouses". News10.
  6. Natalie Hummel (23 September 2011). "The Panicle Rice Mite (Steneotarsonemus spinki): A New Pest To Look For in Rice". LSU AgCenter. Retrieved 22 July 2012.

Further reading