Strigamia maritima

Last updated

Strigamia maritima
Strigamia maritima male.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Myriapoda
Class: Chilopoda
Order: Geophilomorpha
Family: Linotaeniidae
Genus: Strigamia
Species:
S. maritima
Binomial name
Strigamia maritima
(Leach, 1817)
Synonyms
  • Geophilus maritimusLeach, 1817 (basionym)
  • Scolioplanes maritimus(Leach, 1817)

Strigamia maritima is a centipede belonging to the family Linotaeniidae in the order Geophilomorpha. [1] It is the most common of the four fully coastal geophilomorph species known in the British Isles.

Contents

Description

In general, Strigamia maritima is the only member of its genus known to occur on the sea shore. The other species of the genus are woodland species. The species are probably concentrated in areas of the shingle bank which are climatically favorable and have a good food supply. [2] They are found only at the top of the shore, around the High-Water Spring drift line on the seaward side of the shingle bank, but this may well be due to the unstable nature of this part of the beach, and the fact that the fauna is usually sparse. The animal is found far lower down on the landward side where it feeds on Sphaeroma and is liable to spasmodic immersion at high spring tides and during bad weather. Immersed animals migrate up the beach suggesting that even the adults are not well adapted to resist fully marine conditions for long. [3]

Mature females migrate into moist sandy areas where conditions approximate to terrestrial ones to lay their eggs, and to brood their young which are rapidly desiccated in unsaturated air. The time of egg laying appears to be geared to correspond with the time when spring tides have their smallest amplitude and with the least stormy part of the year. It is far better defined than in terrestrial species. This gearing is reflected in the size of the oocytes in the ovary, which varies only very slightly between different individuals at a given time of the year. Males also migrate up the beach to deposit their spermatophores, and all stages migrate into the top of the shingle bank to moult. Such migrations suggest that the spermatophores, eggs, larval stages and moulting animals are unable to withstand much immersion in sea water.

It is possible to separate five post-larval instars in both sexes. The last two being mature as they are in lithobiomorphs. Matures females may be aged by counting the number of whorls of sperm in their seminal receptacles. Since the cast receptacular linings remain intact with their openings facing the receptacular duct, sperm passing up this duct are likely to find their way into the old linings and will therefore become arranged in a number of whorls. The centipede is a nonspecific carnivore that feeds at least from February to November. The main food source is Sphaeroma probably because this crustacean is so abundant. The only likely predators of Strigamia are carabid and staphylinid beetles, and these only take the smaller stadia. [4]

Habitat

Studies about the habitat of Strigamia were done in different countries. For example:

The population of Strigamia inhabited a shingle bank on the east side of the mouth of the River Cuckmere which enters the English Channel some two and a half miles east of Seaford, Sussex. Although Strigamia was almost completely absent from the salt marsh proper, a large number of individuals were frequently found at its edge in a narrow belt a few feet wide. The fauna is largely terrestrial in character, the most typical animals being woodlice, ants, and the earwig Porjcub auricularia . L. Strigamia was normally absent from this region. the centipede had deserted this habitat and was not found there in such numbers during the rest of the investigation. The reason for this migration is unknown. [5]

The centipedes were recorded at an average density of 4.26±0.96 m -1 with a maximum of 49 m -1. The extremely high densities of Strigamia maritima seen on North European shores, specially in Scotland, are very striking (Figure 1). Strigamia maritima was also recorded from the coasts of Scandinavia, Germany, Netherlands, Belgium, Britain, Ireland and northern France. Bergesen et al. (2006) recorded it for the first time for North Norway (under stones in the supralittoral amongst isopods, Porcellio scaber). Whilst Horneland and Meidell (1986) were able to collect “several thousands of specimens” from an island north of Bergen. It is often extremely abundant in favorable situations with large numbers under individual stones, a situation that seems to be paralleled by Geophilus becki according to Habermann (1982). Habitats for S. maritima include shingle, under rocks and stones and in rock crevices. The life history and ecology of this species was studied by Lewis (1961) [6] who related its behavior and its tolerance of seawater at different stages of its life history to it being a mobile species, concentrating in areas that are climatically favorable, have a good food supply and to its breeding season also its ability to migrate up and down beaches. ) [4]

Reproduction

The anatomy of the male reproductive system was described by Fabre (1855): A pair of fusiform testis open by way of four vasa efferentia, one leaving from each end of each testis; they fuse to form a much-coiled vas deferens, in which the sperm are stored. The vas deferens divides two thirds of the way along its length to pass round the gut, and fuses again before opening ventrally on a sub-terminal penis. [7] Two pairs of tubular accessory glands lie alongside the gut and open posteriorly into the genital atrium. In maturus males there is a gradual buildup of sperm in the vas deferens beginning in August, when small groups of sperm appear at intervals along its length. The sperm are about 2 mm. long and gradually become rolled up in the distal region of the vas deferens, and lower down are coiled on themselves in the manner of a clock spring. By January the vas deferens is much distended with sperm, and remains thus until May when the number of sperm diminishes. By mid-June the vas deferens is again empty. [5]

The anatomy of the female reproductive system: S. maritima resembles closely that described for other genera by Fabre (1855) and Schaufler (1889), consisting of an unpaired tubular ovary leading to a short oviduct which divides to pass round the gut, fusing again to open ventrally into the subterminal genital atrium. There is a short pair of accessory glands, and in the prepenultimate pediferous segment there is a pair of spherical receptacula semines the convoluted ducts of which open into the genital atrium along with the accessory glands. [5]

After Lewis's analysis in 1968, about the widths of oocytes in the adolescent female S. maritima, it seems that the matures females are fertilized in May before laying their eggs, but the newly recruited maturus juniors are fertilized soon after the moult that produces them in August. In August, the males contain only small quantities of sperm. This may not mean that the rate of sperm production is low, because the quantity of sperm in the reproductive tract depend on the rate of removal as well as the rate of production. The accumulation of sperm in the vas during the winter may be due to a slowing down or complete cessation of spermatophores production at that time. Lewis suggested that the mature males produce spermatophores both in autumn and in spring. And Palmen & Rantala (1954) showed that female Pachymerium collected in the autumn can raise broods successfully the next spring and concluded that in these cases fertilization occurred before hibernation by indiqueting that in the majority of specimen fertilization seems to occur after hibernation. [5]

Egg and larval stages

The females of S. maritima lay their eggs at the end of May or the beginning of June in small brood cavities hollowed out of the sand in the brooding habitat. The eggs are spherical and measure from 0.9 to 1–25 mm. in diameter. It is, however, easily ruptured. The eggs hatch towards the end of June, and the larval stages closely resemble those described by Verhoeff (1902–25) in MecistocephaZus carniolensis C. L. Koch. [5]

Hatching is a very gradual process in Strigamia. the egg shell splits equatorially, and as the embryo, which is bent into a horseshoe shape, gradually elongates and uncurls during development. It pushes the two halves of the shell apart. In S. maritima hatching begins at what Verhoeff terms the last embryonic stage, in which the limbs and mouthparts are represented by simple buds, and the body, covered with cuticle, is inflated anteriorly since it still contains a large quantity of yolk. Eggs which are about to hatch appear pinkish owing to the pinky-violet color of the contained embryos. The pigment occurs in the gut cells of the larvae, the rest of the body being whitish and translucent. The last embryonic stage moults to the “peripatoid” stage in which the trunk is of uniform diameter, and the limbs better developed. [5]

In the peripatoid stage, the embryo is immobile, but in the “foetus” stage, it is capable of making writhing movements; it has fully jointed limbs and antennae, and clearly recognizable mouthparts. This stage is dorso-ventrally flattened and averages 7 mm. in length. The first adolescence stage is the last to be brooded by the female and closely resembles the adult in form. [3]

The embryoid phase

The embryoid phase of post-embryonic development of geophilomorph centipedes may represent an extension of embryonic development, possibly in correlation with the evolution of epimorphic development from an anamorphic ancestor, accomplished without completely losing post-embryonic segmentation activity. This continuity in the segmentation process across the embryonic/postembryonic divide may concur to the evolvability of this developmental process. [3]

Postembryonic development

The eggs are spherical, measuring 0.88 to 1.11 mm in diameter. The color is changing from yellow to whitish yellow as the embryo develops. [8]

As the egg teeth, helped by the increase of yolk in the front part, break the egg-shell the last embryonic stadium appears. This ends up in the peripatoid stadium. At the end of the peripatoid stadium, both the pre- and the metatergites are formed and the embryonic cuticle is only attached at the rear end. [9]

The body has got its ‘normal’ dorso-ventral flattening. The extremities are segmented and the male gonopods are not developed. The width of the forcipular coxosternite is measured to 0.34 to 0.41 mm. The number of setae is extremely low as compared to the coming stadia. [6]

In this stadium, most characters of the mature animal are apparent, but the numbers of seta, sensory sensilla and coxal glands are increasing through the stadia to follow. It is possible to separate the sexes using a microscope (see male gonopods [10] ). Evolving of intentional movement, which eventually leads to the seashore (feeding grounds), is described by Lewis (1961). The major importance is the development of the tracheal system, which also marks the border between foetus and Adolescens 1. It must be the survival factor for animals sporadically submerged in (salt) water, either surviving the submerging or being washed ashore by the same principle. [11]

Feeding

Other gastropods (Littorina saxatalis) and lumbricid worms were all observed at various times to be fed on by Strigamia maritima. Strigamia maritima attacks small Orchestia (or Drosophila if offered) by tearing the prey to pieces. When attacking larger Orchestia, 1 cm or more in length (which it only did if they were damaged or dying) it made a transverse slit and pushed its head and anterior segments inside and the poison claws were seen to be constantly in motion macerating tissue whilst the centipede was involved in what seemed to be external digestion and suctorial feeding. Group feeding, as observed in this species could be advantageous in dealing with prey that would otherwise be invulnerable to them. Alternatively, small specimens could enter barnacles otherwise inaccessible to larger animals and bring about their opening. [5]

Evolution and development

Any individual species of geophilomorph centipede exhibits a much more restricted range of variation in segment number than the range for the group as a whole; just how restricted depends on the species concerned. Some species have a surprisingly large range, for example about 80. Others, in the family Mecistocephalidae, have a range of zero. [12] There is no variation. This family is probably the outgroup to the rest of the Geophilomorpha. Species of Strigamia are intermediate between these two extremes, in that they show a small-to-moderate range of variation. In S. maritima, this range is at least 8 (from 45 to 53). The intraspecific variation has several elements, as described in earlier papers. [10] First, there is sexual dimorphism, with females typically having two segments more than males. Second, there is variation within each sex within a population. Third, there is between-population variation, much of it explicable by a latitudinal cline, in which segment number increases from North to South. The variation cannot be explained by differences in population age structure, because segment number is fixed before hatching. There is no addition of segments during postembryonic growth, despite some assertions to the contrary. [6]

In the naturally occurring variation in the segment number of Strigamia maritima, it is clear that the developmental process, as described above, is being influenced either by genetic or environmental factors, or possibly by both. The difference in segment number distributions between males and females within populations is presumably of genetic origin. But what of the variation within each sex? the importance of genetic and environmental influences on development are now known to be incorrect. [12] early studies have not provided any reliable clues about the causes of the variation in segment number within and between populations in nature but studies had proved that in Strigamia, the variation is at least partially heritable. There may yet turn out to be direct environmental effects too like temperature. [12] This environmental factor can have an effect on the number of segments formed during the period of embryogenesis of Strigamia, because the cohorts within the same population that derive from embryonic development in warmer summers have significantly higher segment number distributions than cohorts that develop in cooler summers. [3] Considering in particular the latitudinal cline, this could be a result of selection, with fewer segments being favored in more northern populations, for example because of a slightly but significantly shorter development time (hypothesis, not fact), which might be beneficial in harsher northern climates with shorter summer seasons. On the other hand, if temperature does indeed have a direct effect on segmentation (again, hypothesis rather than fact), then the cline could be caused by this instead. However, if the explanation was solely of this latter kind, i.e. all due to direct environmental effects and no selective component, then it is hard to explain why the observed pattern of between-species variation mirrors its intraspecific equivalent, with more northerly species having fewer segments than their southern counterparts. [12] One compound hypothesis is that speciating peripheral isolates at northern or southern ends of a parent species’ range go through a phase of having a restricted amount of variation in segment number. These may experience canalization of their developmental system so that it is resistant to producing segment numbers outside that range until the newly speciated isolate begins to extend its own range north or south from its starting point, thus again experiencing a wider range of temperatures. Thus, each species would carry a genetic ‘imprint’ of its site of origin. [6] [10]

Related Research Articles

<span class="mw-page-title-main">Onychophora</span> Phylum of invertebrate animals

Onychophora, commonly known as velvet worms or more ambiguously as peripatus, is a phylum of elongate, soft-bodied, many-legged panarthropods. In appearance they have variously been compared to worms with legs, caterpillars, and slugs. They prey upon other invertebrates, which they catch by ejecting an adhesive slime. Approximately 200 species of velvet worms have been described, although the true number of species is likely greater. The two extant families of velvet worms are Peripatidae and Peripatopsidae. They show a peculiar distribution, with the peripatids being predominantly equatorial and tropical, while the peripatopsids are all found south of the equator. It is the only phylum within Animalia that is wholly endemic to terrestrial environments, at least among extant members. Velvet worms are generally considered close relatives of the Arthropoda and Tardigrada, with which they form the proposed taxon Panarthropoda. This makes them of palaeontological interest, as they can help reconstruct the ancestral arthropod. In modern zoology they are particularly renowned for their curious mating behaviours and the bearing of live young in some species.

<span class="mw-page-title-main">Centipede</span> Many-legged arthropods with elongated bodies

Centipedes are predatory arthropods belonging to the class Chilopoda of the subphylum Myriapoda, an arthropod group which includes millipedes and other multi-legged animals. Centipedes are elongated segmented (metameric) creatures with one pair of legs per body segment. All centipedes are venomous and can inflict painful bites, injecting their venom through pincer-like appendages known as forcipules. Despite the name, no centipede has exactly 100 pairs of legs; number of legs ranges from 15 pairs to 191 pairs, always an odd number. They are predominantly carnivorous.

<span class="mw-page-title-main">Mesonephric duct</span> Paired organ in mammals

The mesonephric duct, also known as the Wolffian duct, archinephric duct, Leydig's duct or nephric duct, is a paired organ that develops in the early stages of embryonic development in humans and other mammals. It is an important structure that plays a critical role in the formation of male reproductive organs. The duct is named after Caspar Friedrich Wolff, a German physiologist and embryologist who first described it in 1759.

<span class="mw-page-title-main">Symphyla</span> Class of many-legged arthropods

Symphylans, also known as garden centipedes or pseudocentipedes, are soil-dwelling arthropods of the class Symphyla in the subphylum Myriapoda. Symphylans resemble centipedes, but are very small, non-venomous, and only distantly related to both centipedes and millipedes. They can move rapidly through the pores between soil particles, and are typically found from the surface down to a depth of about 50 centimetres (20 in). They consume decaying vegetation, but can do considerable harm in an agricultural setting by consuming seeds, roots, and root hairs in cultivated soil.

<span class="mw-page-title-main">Myriapoda</span> Subphylum of arthropods

Myriapods are the members of subphylum Myriapoda, containing arthropods such as millipedes and centipedes. The group contains about 13,000 species, all of them terrestrial.

<span class="mw-page-title-main">Male reproductive system</span> Reproductive system of the human male

The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These organs are located on the outside of the body and within the pelvis.

<span class="mw-page-title-main">Aedeagus</span> Reproductive organ of male arthropods

An aedeagus is a reproductive organ of male arthropods through which they secrete sperm from the testes during copulation with a female. It can be thought of as the insect equivalent of a mammal's penis, though the comparison is fairly loose given the greater complexity of insect reproduction. The term is derived from Ancient Greek αἰδοῖα and ἀγός. It is pronounced or.

<i>Scolopendra subspinipes</i> Species of centipede

Scolopendra subspinipes is a species of very large centipede found throughout southeastern Asia. One of the most widespread and common species in the genus Scolopendra, it is also found on virtually all land areas around and within the Indian Ocean, all of tropical and subtropical Asia from Russia to the islands of Malaysia and Indonesia, Australia, South and Central America, the Caribbean islands, and possibly parts of the southern United States, but how much of this range is natural and how much due to human introduction is unclear. With a wide geographic range and numerous color variations, the species is known by many common names, including jungle centipede, orange-legged centipede, Hawaiian centipede, and Vietnamese centipede.

<span class="mw-page-title-main">Ocoee salamander</span> Species of amphibian

The ocoee salamander is a species of salamander in the family Plethodontidae. This salamander has a variety of colors and patterns, and got its name from Tennessee state wildflower. Its natural habitats are temperate forests, rivers, intermittent rivers, freshwater springs and wet rocks in mountainous areas of the Southeastern United States. It was first described by Nicholls in 1949. They are territorial and feed on small invertebrates. It is widely distributed in the southeastern United States and is listed as "Least Concern" by the International Union for Conservation of Nature.

<span class="mw-page-title-main">Spawn (biology)</span> Process of aquatic animals releasing sperm and eggs into water

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of releasing the eggs and sperm, and the act of both sexes is called spawning. Most aquatic animals, except for aquatic mammals and reptiles, reproduce through the process of spawning.

The reproductive system of an organism, also known as the genital system, is the biological system made up of all the anatomical organs involved in sexual reproduction. Many non-living substances such as fluids, hormones, and pheromones are also important accessories to the reproductive system. Unlike most organ systems, the sexes of differentiated species often have significant differences. These differences allow for a combination of genetic material between two individuals, which allows for the possibility of greater genetic fitness of the offspring.

<span class="mw-page-title-main">Sexual reproduction</span> Reproduction process that creates a new organism by combining the genetic material of two organisms

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

<span class="mw-page-title-main">Reproductive system of gastropods</span>

The reproductive system of gastropods varies greatly from one group to another within this very large and diverse taxonomic class of animals. Their reproductive strategies also vary greatly, see Mating of gastropods.

<i>Leptanilla japonica</i> Species of ant

Leptanilla japonica is an uncommon highly migratory, subterranean ant found in Japan. They are tiny insects, with workers measuring about 1.2 mm and queens reaching to about 1.8 mm, and live in very small colonies of only a few hundred individuals at a time Its sexual development follows a seasonal cycle that affects the colony's migration and feeding habits, and vice versa. L. japonica exhibits specialized predation, with prey consisting mainly of geophilomorph centipedes, a less reliable food source that also contributes to their high rate of nest migration. Like ants of genera Amblyopone and Proceratium, the genus Leptanilla engages in larval hemolymph feeding (LHF), with the queen using no other form of sustenance. LHF is an advantageous alternative to the more costly cannibalism. Unlike any other ant, however, members of Leptanilla, including L. japonica, have evolved a specialized organ dubbed the “larval hemolymph tap” that reduces the damage LHF inflicts on the larvae. LHF has become this species' main form of nutrition.

<i>Scolopendra morsitans</i> Species of centipede

Scolopendra morsitans, also known as the Tanzanian blue ringleg or red-headed centipede, is a species of centipede in the family Scolopendridae. S. morsitans is the type species for the genus Scolopendra.

<i>Geophilus flavus</i> Species of centipede

Geophilus flavus is a terrestrial, soil-dwelling, species of centipede in the Geophilidae family. G. flavus occurs in a range of habitats across central Europe, North America, Australia and other tropical regions. Geophilomorph centipedes, like centipedes generally, are primary predators, hunting predominantly in underground soil burrows or above ground leaf litter. Their consumption behaviours are influenced by environment and seasonal factors. Given their lack of economic value and marginal medical significance, G.flavus remains largely understudied in mainstream research. Some recent studies have detailed the evolutionary development of G.flavus and Geophilidae generally, illustrating developed predatory features like forcipule venom glands.

Most insects reproduce oviparously, i.e. by laying eggs. The eggs are produced by the female in a pair of ovaries. Sperm, produced by the male in one testis or more commonly two, is transmitted to the female during mating by means of external genitalia. The sperm is stored within the female in one or more spermathecae. At the time of fertilization, the eggs travel along oviducts to be fertilized by the sperm and are then expelled from the body ("laid"), in most cases via an ovipositor.

<span class="mw-page-title-main">Geophilidae</span> Family of centipedes

The Geophilidae are a polyphyletic, cosmopolitan family of soil centipedes in the superfamily Geophiloidea containing the mostly defunct clades Aphilodontidae, Dignathodontidae, Linotaeniidae, Chilenophilinae, and Macronicophilidae.

<span class="mw-page-title-main">Mecistocephalidae</span> Family of centipedes

Mecistocephalidae is a monophyletic family of centipedes in the order Geophilomorpha. It is the only family in the suborder Placodesmata. Most species in this family live in tropical or subtropical regions, but some occur in temperate regions. This family is the third most diverse in the order Geophiliomorpha, with about 170 species, including about 130 species in the genus Mecistocephalus.

<span class="mw-page-title-main">Schendylidae</span> Family of centipedes

Schendylidae is a family of centipedes in the order Geophilomorpha.

References

  1. Barber, A.D.; Minelli, A. (2010). Strigamia maritima (Leach, 1817). In: Barber, A. D. (2017). World database of littoral Myriapoda. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=105492 on 2017-12-11
  2. Dugon, Michel M.; Arthur, Wallace (2012). "Comparative studies on the structure and development of the venom-delivery system of centipedes, and a hypothesis on the origin of this evolutionary novelty". Evolution & Development. 14 (1): 128–137. doi:10.1111/j.1525-142X.2011.00527.x. PMID   23016980. S2CID   11819728.
  3. 1 2 3 4 Arthur, Wallace; Chipman, Ariel D. (2005). "The centipede Strigamia maritima: what it can tell us about the development and evolution of segmentation". BioEssays. 27 (6): 653–660. doi:10.1002/bies.20234. PMID   15892117.
  4. 1 2 Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; et al. (2014). "The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima". PLOS Biology. 12 (11): e1002005. doi:10.1371/journal.pbio.1002005. ISSN   1545-7885. PMC   4244043 . PMID   25423365.
  5. 1 2 3 4 5 6 7 Brena, Carlo (2014). "The embryoid development of Strigamia maritimaand its bearing on post-embryonic segmentation of geophilomorph centipedes". Frontiers in Zoology. 11 (1). doi: 10.1186/s12983-014-0058-9 . ISSN   1742-9994.
  6. 1 2 3 4 Lewis, J. G. E. (1961). "The life history and ecology of the littoral centipede Strigamia (=Scolioplanes) maritima (Leach)". Proceedings of the Zoological Society of London. 137 (2): 221–248. doi:10.1111/j.1469-7998.1961.tb05900.x.
  7. Barber, A. D. (2011). "Geophilomorph centipedes and the littoral habitat". Terrestrial Arthropod Reviews. 4 (1): 17–39. doi:10.1163/187498311X546986.
  8. Meidell, Bjarne A.; Horneland, Erling O. (1986). "The epimorphosis of Strigamia maritima (Leach, 1817) (Chilopoda: Geophilidae)". Insect Systematics & Evolution. 17 (1): 127–129. doi:10.1163/187631286X00161.
  9. Horneland, E. O.; Meidell, B. (2009). "Postembryonic development of Strigamia maritima (Leach, 1817) (Chilopoda: Geophilomorpha: Linotaeniidae) with emphasis on how to separate the different stadia" (PDF). Soil Organisms. 81: 373–386.
  10. 1 2 3 Kettle, Chris; Johnstone, Jenni; Jowett, Trevor; Arthur, Helen; Arthur, Wallace (2003). "The pattern of segment formation, as revealed by engrailed expression, in a centipede with a variable number of segments". Evolution and Development. 5 (2): 198–207. doi:10.1046/j.1525-142X.2003.03027.x. PMID   12622737. S2CID   35401659.
  11. West-Eberhard, Mary Jane (February 2003). Developmental Plasticity and Evolution. Oxford University Press.
  12. 1 2 3 4 Vedel, Vincent; Chipman, Ariel D.; Akam, Michael; Arthur, Wallace (2008). "Temperature-dependent plasticity of segment number in an arthropod species: the centipede". Evolution & Development. 10 (4): 487–492. doi:10.1111/j.1525-142X.2008.00259.x. PMID   18638325. S2CID   23597726.