Sulfiredoxin

Last updated
sulfiredoxin
Identifiers
EC no. 1.8.98.2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a sulfiredoxin (EC 1.8.98.2) is an enzyme that catalyzes the chemical reaction

peroxiredoxin-(S-hydroxy-S-oxocysteine) + ATP + 2 R-SH peroxiredoxin-(S-hydroxycysteine) + ADP + phosphate + R-S-S-R

The 3 substrates of this enzyme are peroxiredoxin-(S-hydroxy-S-oxocysteine), ATP, and a thiol, whereas its 4 products are peroxiredoxin-(S-hydroxycysteine), ADP, phosphate, and a disulfide.

This enzyme is involved in antioxidant metabolism by re-activating peroxiredoxins, which are a group of peroxidases, when these enzymes are inhibited by over-oxidation. [1]

This enzyme belongs to the family of oxidoreductases, specifically those acting on a sulfur group of donors with other, known, acceptors. The systematic name of this enzyme class is peroxiredoxin-(S-hydroxy-S-oxocysteine):thiol oxidoreductase [ATP-hydrolysing; peroxiredoxin-(S-hydroxycysteine)-forming]. Other names in common use include Srx1, sulphiredoxin, and peroxiredoxin-(S-hydroxy-S-oxocysteine) reductase.

Function

The sulfur atom in the side-chain of the amino acid cysteine can exist in several different oxidation states. The most reduced of these is as a thiol group (Cys-SH). Oxidation of cysteine produces cystine, which is one half of a disulfide bond (Cys-S-S-Cys). These lower oxidation states of cysteine (disulfides) are readily reversible, but higher oxidation states, such as sulfinic acid (Cys-SOOH), were once considered irreversible, biologically speaking. This view changed with the discovery of sulfiredoxin, an enzyme that can reduce sulfinic acid back to thiol, in an ATP-dependent manner. Additional work suggests that it plays a role in resolving mixed disulfide bonds.

Initially discovered in yeast, sulfiredoxin is conserved in all eukaryotes, including mammals. In a perfect example of how multiple gene names can confuse the field, sulfiredoxin (Srxn1) was already known as a gene of unknown function, cloned by differential display of an in vitro model of tumorigenesis, and termed “Neoplastic progression 3/Npn3” although nothing about its actual function was reported. As a result, in most mouse microarray studies, sulfiredoxin is termed neoplastic progression 3, and typically classified as “cancer related” or “other” rather than as “antioxidant”.

Npn3/Srxn1 is upregulated by an exceptionally large fold-magnitude in microarray studies of oxidative stress. Npn3/Srxn1 is induced up to 32-fold by D3T (liver), 12-fold by CdCl2, (liver), 4- to 10-fold by paracetamol (liver) and 3.3-fold by paraquat (heart). A survey of the GEO database also indicates a large induction of Npn3/Srxn1 is observed in injury to the lung by hyperoxia (data set GDS247, ID# 102780_at) or phosgene (GDS1244, 1451680_at). That Npn3 and Sxrn1 are synonyms of the same gene has not been pointed out in any of the 15 papers written on Srxn1 since its discovery.

Because it was discovered so recently, the function of sulfiredoxin is not yet fully known.

Sulfiredoxin knockout mice is available in Dr. Qiou Wei's lab at University of Kentucky and mice are found normal under normal circumstances. On treatment of these mice with carcinogens, Srx knockout mice were found to be less prone to few cancer types compared to wildtype mice. It shows the critical role of Srx in carcinogenesis of human tumors.

Related Research Articles

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, only L-cysteine is found in nature.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Acetaldehyde dehydrogenase</span> Class of enzymes

Acetaldehyde dehydrogenases are dehydrogenase enzymes which catalyze the conversion of acetaldehyde into acetyl-CoA. This can be summarized as follows:

<span class="mw-page-title-main">Cysteine dioxygenase</span> Enzyme

Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the conversion of L-cysteine to cysteine sulfinic acid. CDO plays an important role in cysteine catabolism, regulating intracellular levels of cysteine and responding changes in cysteine availability. As such, CDO is highly regulated and undergoes large changes in concentration and efficiency. It oxidizes cysteine to the corresponding sulfinic acid by activation of dioxygen, although the exact mechanism of the reaction is still unclear. In addition to being found in mammals, CDO also exists in some yeast and bacteria, although the exact function is still unknown. CDO has been implicated in various neurodegenerative diseases and cancers, which is likely related to cysteine toxicity.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">ER oxidoreductin</span>

ER oxidoreductin 1 (Ero1) is an oxidoreductase enzyme that catalyses the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum (ER) of eukaryotes. ER Oxidoreductin 1 (Ero1) is a conserved, luminal, glycoprotein that is tightly associated with the ER membrane, and is essential for the oxidation of protein dithiols. Since disulfide bond formation is an oxidative process, the major pathway of its catalysis has evolved to utilise oxidoreductases, which become reduced during the thiol-disulfide exchange reactions that oxidise the cysteine thiol groups of nascent polypeptides. Ero1 is required for the introduction of oxidising equivalents into the ER and their direct transfer to protein disulfide isomerase (PDI), thereby ensuring the correct folding and assembly of proteins that contain disulfide bonds in their native state.

<span class="mw-page-title-main">Sulfenic acid</span> Organosulfur compound of the form R–SOH

In chemistry, a sulfenic acid is an organosulfur compound and oxoacid with the general formula R−S−OH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

<span class="mw-page-title-main">Peroxiredoxin</span> Family of antioxidant enzymes

Peroxiredoxins are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels and thereby mediate signal transduction in mammalian cells. The family members in humans are PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, and PRDX6. The physiological importance of peroxiredoxins is indicated by their relative abundance. Their function is the reduction of peroxides, specifically hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite.

<span class="mw-page-title-main">PDIA3</span> Protein-coding gene in the species Homo sapiens

Protein disulfide-isomerase A3 (PDIA3), also known as glucose-regulated protein, 58-kD (GRP58), is an isomerase enzyme. This protein localizes to the endoplasmic reticulum (ER) and interacts with lectin chaperones calreticulin and calnexin (CNX) to modulate folding of newly synthesized glycoproteins. It is thought that complexes of lectins and this protein mediate protein folding by promoting formation of disulfide bonds in their glycoprotein substrates.

<span class="mw-page-title-main">Flavin-containing monooxygenase 3</span> Protein-coding gene in the species Homo sapiens

Flavin-containing monooxygenase 3 (FMO3), also known as dimethylaniline monooxygenase [N-oxide-forming] 3 and trimethylamine monooxygenase, is a flavoprotein enzyme (EC 1.14.13.148) that in humans is encoded by the FMO3 gene. This enzyme catalyzes the following chemical reaction, among others:

Glutamate–cysteine ligase (GCL) EC 6.3.2.2), previously known as γ-glutamylcysteine synthetase (GCS), is the first enzyme of the cellular glutathione (GSH) biosynthetic pathway that catalyzes the chemical reaction:

<span class="mw-page-title-main">Trypanothione synthase</span> Class of enzymes

In enzymology, a trypanothione synthase (EC 6.3.1.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Peroxiredoxin 1</span> Protein found in humans

Peroxiredoxin-1 is a protein that in humans is encoded by the PRDX1 gene.

<span class="mw-page-title-main">Peroxiredoxin 2</span> Protein found in humans

Peroxiredoxin-2 is a protein that in humans is encoded by the PRDX2 gene.

<span class="mw-page-title-main">PRDX6</span> Protein-coding gene in the species Homo sapiens

Peroxiredoxin-6 is a protein that in humans is encoded by the PRDX6 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">PRDX5</span> Protein-coding gene in the species Homo sapiens

Peroxiredoxin-5 (PRDX5), mitochondrial is a protein that in humans is encoded by the PRDX5 gene, located on chromosome 11.

<span class="mw-page-title-main">PRDX3</span> Protein-coding gene in the species Homo sapiens

Thioredoxin-dependent peroxide reductase, mitochondrial is an enzyme that in humans is encoded by the PRDX3 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">SRXN1</span> Protein-coding gene in the species Homo sapiens

Sulfiredoxin-1 is a protein that in humans is encoded by the SRXN1 gene.

<span class="mw-page-title-main">PRDX4</span> Protein-coding gene in the species Homo sapiens

Peroxiredoxin-4 is a protein that in humans is encoded by the PRDX4 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">FMO4</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 4 is an enzyme that in humans is encoded by the FMO4 gene.

References

  1. Jönsson TJ, Lowther WT (20 April 2007). "The Peroxiredoxin Repair Proteins". Subcellular Biochemistry. 44: 115–41. doi:10.1007/978-1-4020-6051-9_6. ISBN   978-1-4020-6050-2. PMC   2391273 . PMID   18084892.{{cite journal}}: Cite journal requires |journal= (help)