Synurbization

Last updated
Changes in behaviour, such as nesting changes. Schlusselau Storche Nest P4RM1792.jpg
Changes in behaviour, such as nesting changes.

Synurbization refers to the effects of urbanization on the adaptation of wildlife, and how animals that live in urban environments versus nature environments differ. [1] Urbanization, in terms of ecology, means developmental changes to the environment. These changes are often in benefit to humans. When applying synurbization to circumstances of urbanization where species have adapted, that adaptation does not occur by accident. [1] Animals making adaptations to the environment change are often only doing so because of urban expansion into their current environments—e.g., the expansion of cities removing forested areas occupied species such as birds. Urbanization causes synurbization. Animals change behaviour as required for survival. Those species that better adapt and have favourable variations in traits ultimately have higher fitness. However, while some of the behavioural adaptations are favourable for the species, consequences stem from the urbanization and impact these species. [1] [2] In some cases, even humans are victims to these consequences.

Contents

Changes in the behaviour

When compared to species that live in natural environments, the differences between those species and the urbanized species is clear. [1] These adaptational changes in behaviour have been labeled as "urban wildlife syndrome" [3] [4] since the changes in one species is not exclusive to that one species, instead, it has been visible over multiple species. [2]

Changes in behaviour have been documented in many species responding to urban expansion into their habitats. [1]

Due to excessive "hand-rearing" in bird species, some individuals may become behaviorally crippled. This can remove innate survival skills that a species would otherwise possess. One of the most important behaviours that these young would lose is their fear of humans. [5]

Population density increase

Including the correlation between other variables, such as aggression and wariness, multiple studies show a population density increase. [1] [2] [3] [4] Population density is the population number in one unit of area at a given time. [6] The increase in population density has been highly correlated with the reduction in species wariness, as well as their intra-specie aggression. As population density increases, wariness of humans decreases- this is known as a negative correlation. As population density increases, intra-specific aggression increases- this is known as a positive correlation. [3] [4] Park spaces in urbanized spaces may contribute to this population density increase. These parks allow for species to mate, and access and be fed food by humans, with little to no predation. [4] [1]

Decreased wariness

Wariness is the observable fear that animals feel when encountering humans. They may be startled or retreat rapidly. Previous research hypothesized that population density is the main influence on this behavioural change. [2] [4] While coexisting with humans, it is logical that over time, animals become accustomed to human presence. However, not only are these animals less startled by humans, but they also are willing to approach and physically interact with humans. This tameness results from human willingness to feed these animals. [4] Easy access to food changes natural behaviour in rural animal populations. [1] A negative effect of decreased wariness would be the inhumane killing of animals that some humans see as a nuisance. Some humans have been observed to have an irrational fear of wildlife in their yards and resort to "intentional abuse", and "unethical harm." [5]

Increased intra-specific aggression

Intra-specific aggression is the aggression toward members of their own species. [7] Similar to reduced wariness, the increase in intra-specific aggression may be the result of the increase in population density. Having more members of a species in a smaller unit area, all whilst still competing for the same resources is likely to have the outcome of higher aggression levels. [1] [2] [4]

Increased lifespan

Squirrel having easy access to food due to humans having feeders for the wildlife. Squirrel on the bird feeder (3062474530).jpg
Squirrel having easy access to food due to humans having feeders for the wildlife.

Animals living in urbanized populations are on average living substantially longer than their rural species populations. This is due to many factors such as: [1]

Change in the circadian rhythm

Some hypothesize that changes in circadian rhythm are because of artificial light [1] from street lights, cars, homes, and large signs.

Change in nesting habits

In birds specifically, those in urban environments, use much different nesting materials than their counterpart rural populations. Birds in rural areas use materials such as twigs, grass, moss, and other naturally occurring materials for their nests, whereas urbanized birds have less access to these types of materials and have had to adapt to using other materials. Instead of nesting in trees, they can find shelter in the infrastructure of buildings and bridges, and public parks. [1]

Changes in the Gut Microbiota

Rapid urbanization has more recently also been associated with incidences of autoimmune diseases, such as IBD. Urbanization has shown to reduce diversity of the gut microbiota through Westernization of diet, pollution, and increased antibiotic use. [8] Additionally, in birds, shifts in habitat use and diet in urban birds has been shown to increase susceptibility to pathogens through alternation of microbial composition and diversity. [9]

Consequences of urban development

The main consequence of urban development for wildlife is a decrease in its species and ecological diversity. The growing tendency towards synurbization observed in birds and mammals is a chance for enriching diversity of urban wildlife. Synurbization of some species could cause practical problems when their populations grow to high concentrations. An example of such problems is Canada goose in North American cities. [10]

Related Research Articles

<span class="mw-page-title-main">Urbanization</span> Process of population movement to cities

Urbanization is the population shift from rural to urban areas, the corresponding decrease in the proportion of people living in rural areas, and the ways in which societies adapt to this change. It can also mean population growth in urban areas instead of rural ones. It is predominantly the process by which towns and cities are formed and become larger as more people begin living and working in central areas.

<i>Ex situ</i> conservation Preservation of plants or animals outside their natural habitats

Ex situ conservation is the process of protecting an endangered species, variety, or breed of plant or animal outside its natural habitat. For example, by removing part of the population from a threatened habitat and placing it in a new location, an artificial environment which is similar to the natural habitat of the respective animal and within the care of humans, such as a zoological park or wildlife sanctuary. The degree to which humans control or modify the natural dynamics of the managed population varies widely, and this may include alteration of living environments, reproductive patterns, access to resources, and protection from predation and mortality.

<span class="mw-page-title-main">Torresian crow</span> Species of bird

The Torresian crow, also called the Australian crow or Papuan crow, is a passerine bird in the crow family native to the north and west of Australia and nearby islands in Indonesia and Papua New Guinea. The species has a black plumage, beak and mouth with white irises. The base of the feathers on the head and neck are white. The Torresian crow is slightly larger with a more robust bill than the morphologically similar little crow.

<span class="mw-page-title-main">Wildlife garden</span> Environment created by a gardener that serves as a sustainable haven for surrounding wildlife

A wildlife garden is an environment created with the purpose to serve as a sustainable haven for surrounding wildlife. Wildlife gardens contain a variety of habitats that cater to native and local plants, birds, amphibians, reptiles, insects, mammals and so on, and are meant to sustain locally native flora and fauna. Other names this type of gardening goes by can vary, prominent ones being habitat, ecology, and conservation gardening.

<span class="mw-page-title-main">Urban ecology</span> Scientific study of living organisms

Urban ecology is the scientific study of the relation of living organisms with each other and their surroundings in an urban environment. An urban environment refers to environments dominated by high-density residential and commercial buildings, paved surfaces, and other urban-related factors that create a unique landscape. The goal of urban ecology is to achieve a balance between human culture and the natural environment.

<span class="mw-page-title-main">Northern mockingbird</span> Species of bird

The northern mockingbird is a mockingbird commonly found in North America, of the family Mimidae. The species is also found in some parts of the Caribbean, as well as on the Hawaiian Islands. It is typically a permanent resident across much of its range, but northern mockingbirds may move farther south during inclement weather or prior to the onset of winter. The northern mockingbird has gray to brown upper feathers and a paler belly. Its tail and wings have white patches which are visible in flight.

<span class="mw-page-title-main">Biological dispersal</span> Movement of individuals from their birth site to a breeding site

Biological dispersal refers to both the movement of individuals from their birth site to their breeding site and the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, and settlement. There are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences, both for evolutionary strategies at a species level and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines the expansion range.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Species richness</span> Number of species in an ecological community, landscape or region

Species richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness. Species richness has proven to be a positive representation to show how species interaction in ecosystems can lead to the productivity and growth of biodiversity.

<span class="mw-page-title-main">Flight zone</span> Range at which an animal flees from a threat

The flight zone of an animal is the area surrounding an animal that if encroached upon by a potential predator or threat, including humans, will cause alarm and escape behavior. The flight zone is determined by the animal's flight distance, sometimes called flight initiation distance (FID) which extends horizontally from the animal and sometimes vertically. It may also be termed escape distance, alert distance, flush distance, and escape flight distance.

<span class="mw-page-title-main">White-footed mouse</span> Species of mammal

The white-footed mouse is a rodent native to North America from southern Canada to the southwestern United States and Mexico. In the Maritimes, its only location is a disjunct population in southern Nova Scotia. It is also known as the woodmouse, particularly in Texas.

<span class="mw-page-title-main">Intraspecific competition</span> Species members compete for resources

Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. By contrast, interspecific competition occurs when members of different species compete for a shared resource. Members of the same species have rather similar requirements for resources, whereas different species have a smaller contested resource overlap, resulting in intraspecific competition generally being a stronger force than interspecific competition.

<span class="mw-page-title-main">Do not feed the animals</span> Policy regarding wildlife

The prohibition "do not feed the animals" reflects a policy forbidding the artificial feeding of wild or feral animals. Signs displaying this message are commonly found in zoos, circuses, animal theme parks, aquariums, national parks, parks, public spaces, farms, and other places where people come into contact with wildlife. In some cases there are laws to enforce such no-feeding policies.

Ecologically sustainable development is the environmental component of sustainable development. It can be achieved partially through the use of the precautionary principle; if there are threats of serious or irreversible environmental damage, lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation. Also important is the principle of intergenerational equity; the present generation should ensure that the health, diversity and productivity of the environment is maintained or enhanced for the benefit of future generations. In order for this movement to flourish, environmental factors should be more heavily weighed in the valuation of assets and services to provide more incentive for the conservation of biological diversity and ecological integrity.

<span class="mw-page-title-main">Urban ecosystem</span> Structure of civilization

In ecology, urban ecosystems are considered a ecosystem functional group within the intensive land-use biome. They are structurally complex ecosystems with highly heterogeneous and dynamic spatial structure that is created and maintained by humans. They include cities, smaller settlements and industrial areas, that are made up of diverse patch types. Urban ecosystems rely on large subsidies of imported water, nutrients, food and other resources. Compared to other natural and artificial ecosystems human population density is high, and their interaction with the different patch types produces emergent properties and complex feedbacks among ecosystem components.

<span class="mw-page-title-main">Medium ground finch</span> Species of bird

The medium ground finch is a species of bird in the family Thraupidae. It is endemic to the Galapagos Islands. Its primary natural habitat is tropical shrubland. One of Darwin's finches, the species was the first which scientists have observed evolving in real-time.

<span class="mw-page-title-main">Urban wildlife</span> Wildlife that can live or thrive in urban environments

Urban wildlife is wildlife that can live or thrive in urban/suburban environments or around densely populated human settlements such as towns.

<span class="mw-page-title-main">Defaunation</span> Loss or extinctions of animals in the forests

Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

<span class="mw-page-title-main">Animal genetic resources for food and agriculture</span>

Animal genetic resources for food and agriculture (AnGR), also known as farm animal genetic resources or livestock biodiversity, are genetic resources of avian and mammalian species, which are used for food and agriculture purposes. AnGR is a subset of and a specific element of agricultural biodiversity.

Urban evolution refers to the heritable genetic changes of populations in response to urban development and anthropogenic activities in urban areas. Urban evolution can be caused by non-random mating, mutation, genetic drift, gene flow, or evolution by natural selection. In the context of Earth's living history, rapid urbanization is a relatively recent phenomenon, yet biologists have already observed evolutionary change in numerous species compared to their rural counterparts on a relatively short timescale.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Luniak, M (2004). "Synurbization–adaptation of animal wildlife to urban development". In Proc. 4th Int. Symposium Urban Wildl. Conserv. Tucson: 50–55.
  2. 1 2 3 4 5 Parker, Tommy S.; Nilon, Charles H. (June 2012). "Urban landscape characteristics correlated with the synurbization of wildlife". Landscape and Urban Planning. 106 (4): 316–325. doi:10.1016/j.landurbplan.2012.04.003. ISSN   0169-2046.
  3. 1 2 3 4 5 Warren, Paige; Tripler, Chris; Bolger, Douglas; Faeth, Stanley; Huntly, Nancy; Lepczyk, Christopher; Meyer, Judith; Parker, Thomas; Shochat, Eyal; Walker, Jason (October 2006). "Urban Food Webs: Predators, Prey, and the People Who Feed Them". Bulletin of the Ecological Society of America. 87 (4): 387–393. doi: 10.1890/0012-9623(2006)87[387:ufwppa]2.0.co;2 . ISSN   0012-9623.
  4. 1 2 3 4 5 6 7 8 9 Parker, Tommy S.; Nilon, Charles H. (September 2008). "Gray squirrel density, habitat suitability, and behavior in urban parks". Urban Ecosystems. 11 (3): 243–255. doi:10.1007/s11252-008-0060-0. ISSN   1083-8155. S2CID   35311893.
  5. 1 2 Burton, Donald L., and Kelly A. Doblar. "Morbidity and mortality of urban wildlife in the midwestern United States." Proc 4th International Urban Wildlife Symposium. Vol. 171. 2004.
  6. "Introduction to Population Demographics | Learn Science at Scitable". www.nature.com. Retrieved 2024-12-10.
  7. "Intraspecific".
  8. Zuo, Tao; Kamm, Michael A.; Colombel, Jean-Frédéric; Ng, Siew C. (2018). "Urbanization and the gut microbiota in health and inflammatory bowel disease". Nature Reviews Gastroenterology & Hepatology. 15 (7): 440–452. doi:10.1038/s41575-018-0003-z. PMID   29670252. S2CID   4944320.
  9. Murray, Maureen H.; Lankau, Emily W.; Kidd, Anjelika D.; Welch, Catharine N.; Ellison, Taylor; Adams, Henry C.; Lipp, Erin K.; Hernandez, Sonia M. (2020). "Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird". PLOS ONE. 15 (3): e0220926. doi: 10.1371/journal.pone.0220926 . PMC   7058277 . PMID   32134945.
  10. Luniak, Maciej, Synurbization[w]: Warsaw wild life:notes, Warszawa, 2008