Rufous-collared sparrow

Last updated

Rufous-collared sparrow
Temporal range: Late Pleistocene–present
O
S
D
C
P
T
J
K
Pg
N
Rufous-collared sparrow (Zonotrichia capensis costaricensis) 2.jpg
Zonotrichia capensis costaricensis, Panama
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Passeriformes
Family: Passerellidae
Genus: Zonotrichia
Species:
Z. capensis
Binomial name
Zonotrichia capensis
(Müller, 1776)
Zonotrichia capensis map.svg
Range of Z. capensis
Juvenile in Colombia Rufous collared sparrow (Zonotrichia capensis costaricensis) juvenile Cundinamarca.jpg
Juvenile in Colombia
Z. c. australis singing in Los Glaciares National Park, Patagonia, Argentina Zonotrichia capensis -Los Glaciares National Park, Argentina-8.jpg
Z. c. australis singing in Los Glaciares National Park, Patagonia, Argentina

The rufous-collared sparrow or Andean sparrow (Zonotrichia capensis) is an American sparrow found in a wide range of habitats, often near humans, from the extreme south-east of Mexico to Tierra del Fuego, and the island of Hispaniola (split between the Dominican Republic and Haiti) in the Caribbean. [2] [3] [4] It has diverse vocalizations, which have been intensely studied since the 1970s, particularly by Paul Handford and Stephen C. Lougheed (UWO), Fernando Nottebohm (Rockefeller University) and Pablo Luis Tubaro (UBA). Local names for this bird include the Portuguese tico-tico, the Spanish copetón ("tufted") in Colombia, as well as chingolo and chincol, comemaíz "corn eater" in Costa Rica, and Cigua de Constanza in the Dominican Republic.

Contents

Description

The rufous-collared sparrow is 13.5–15 cm (5+14–6 in) long and weighs 20–25 g (0.71–0.88 oz). The adult has a stubby grey bill, and a grey head with broad black stripes on the crown sides, and thinner stripes through the eye and below the cheeks. The nape and breast sides are rufous, and the upperparts are black-streaked buff-brown. There are two white wing bars. The throat is white, and the underparts are off-white, becoming brown on the flanks and with a black breast patch. [5]

Young birds have a duller, indistinct head pattern, with brown stripes and a buff ground colour. They lack the rufous collar and have streaked underparts.

There are between 25 and 29 subspecies. In general, the smaller forms occur in coastal mountains, intermediate birds in the Andes, and large, darker, forms breed on the tepuis. The largest of the tepui subspecies, Z. c. perezchincillae, has grey underparts, and the rufous collar extends as a black band of freckles across the breast. This form might be separable as a distinct species, or it might just be a particularly distinct population due to genetic bottleneck effects.

Distribution and habitat

In the northern and western parts of its range, this generally abundant bird is typically found at altitudes of 600–4,000 m (2,000–13,100 ft), but in the southern and eastern parts, it is commonly found down to near sea level. It can be seen in virtually any open or semi-open habitat, including cultivations, gardens, parks, grasslands, and scrubby second growth or cerrado. It copes well with urban and suburban environments but is absent from the densely forested sections of the Amazon Basin.

It is also scarce on the Guiana Shield, occurring mainly on some tepuis and in the Pakaraima Mountains of Guyana. [6]

The species was likely more widespread across the Caribbean region during the much cooler climes of the last glacial period, but was left marooned in the highest Hispaniolan mountains (the highest in the Caribbean) once warming began. [7] This pattern is mirrored in the population of the Hispaniolan crossbill (Loxia megaplaga), a sympatric bird. However, it is also known to exist in Aruba and some other Caribbean islands. [3] [4]

Diet

The rufous-collared sparrow feeds on the ground on seeds, fallen grain, insects and spiders. It will sometimes join mixed-species feeding flocks and has been observed to pick termites from spider webs. [8] [9] [10] It is usually seen in pairs which hold small territories, or in small flocks. Tame and approachable, it is common throughout its large range and not considered threatened by the IUCN. [1]

Breeding

Adult rufous-collared sparrow feeds a parasitic shiny cowbird (Molothrus bonariensis) fledgling in Sao Paulo, Brazil (Molothrus bonariensis) e ( Zonotrichia Capensis ).jpg
Adult rufous-collared sparrow feeds a parasitic shiny cowbird (Molothrus bonariensis) fledgling in São Paulo, Brazil

The breeding season is limited by food availability and ultimately rainfall. In the subtropical yungas of north-west Argentina, females begin to build nests around the end of October, when the wet season comes, but by early December most nesting activity has already finished. By contrast, at 2,000 m (6,600 ft) ASL in the Andes of Pichincha Province (Ecuador), eggs were being incubated in December, and nest-building activity was recorded in March and April, suggesting extended breeding throughout the wet season. The open cup nest consists of plant material lined with fine grasses[ citation needed ]. It is constructed in matted vegetation on the ground, low in a tree or bush, or a niche in a wall, perhaps 2 m (6.6 ft) high at best but usually less than 0.5 m (1.6 ft) above ground. [11] [12]

The female lays two or three pale greenish-blue eggs with reddish-brown blotches. The eggs measure approximately 19–21 mm (0.75–0.83 in) by 15–16 mm (0.59–0.63 in) and weigh 2.6–2.8 g (0.092–0.099 oz) each. They are incubated by the female for 12–14 days, during which she spends about two-thirds of the daytime brooding or attending to the nest in some other way. The male helps in feeding the chicks however, which stay in the nest for about two more weeks. They are not very voracious, and even as they approach fledging the parents will only feed them every 10 minutes or so. Brood parasitism, e.g. by the shiny cowbird (Molothrus bonariensis), may occur, and breeding failure due to predation is very frequent during the incubation period. Predation on nestlings, on the other hand, does not seem to occur more often than in similar-sized Passeroidea. [11] [12]

Physiology

Osmoregulation/ionoregulation

The rufous-collared sparrow relies entirely on its kidneys for osmoregulation and ionoregulation. It is able to tolerate a wide range of salt intake despite lacking a salt gland, however, the metabolic cost in energy is too great to maintain the necessary osmoregulatory processes for an extended period of time. As a result, the Rufous-collared sparrow tends not to inhabit marine environments such as salt marshes. Under conditions of higher salt intake, the mass of the kidney and heart can increase up to 20%. This response in organ size causes an increase in basal metabolic rate (BMR) by up to 30%. [13] Kidney size is also affected by the amount of water available in the environment. In arid environments, the urine is more highly concentrated, and the kidneys tend to be smaller than in wetter environments. [14]

Thermoregulation

In association with its non-migratory behavior, and its tendency to be found at a wide range of elevations, the Rufous-collared sparrow experiences significant fluctuations in temperature throughout its range each year. Strategies used to acclimate to changing seasonal temperatures include limiting the amount of evaporative water loss (EWL) and increasing metabolic rate. Total evaporative water loss (TEWL) increases during summer months, which may help prevent overheating, and remains lower during winter months. [15] In response to cold temperatures, both basal metabolic rate (BMR), and maximum metabolic rate (MMR) will increase. [16]

High-altitude adaptations

With a large variation in elevation amongst populations, the rufous-collared sparrow also shows corresponding variation in gene regulation between these populations. High-altitude populations show upregulation in muscle genes associated with metabolic and signal transduction pathways compared to low-altitude populations. [17] This upregulation and expression are plastic, as found when high- and low-altitude birds were brought to a low elevation and no longer showed differences in gene transcription. Other research has shown that rufous-collared sparrows from lower and higher elevations had similar metabolic responses to low oxygen conditions, but that high-altitude birds were more cold tolerant. [18]

Vocalizations

The rufous-collared sparrow has extensive geographical variation in its vocalisations, but calls include a sharp tsip. The male's song, given from a low perch, typically includes slurred whistles with or without a final trill, tee-teeooo, e’e’e’e’e, or teeooo, teeeee.

For subtropical/temperate populations in Argentina (except when noted), the song can be described as follows:
Songs are typically two-part: an introductory phrase (termed "theme" in the original description of the song [19] ) of two to four pure-tone whistles, which are flat, rising, falling, or rising then falling in pitch, followed by a terminal trill, composed of several to many identical (or nearly so) elements. There is a high degree of stereotypy of song within individuals, both within and among seasons. The trill rate is locally very consistent, but varies greatly among populations, with inter-element intervals ranging from 12  ms to 400 ms or more.

Song measures: [19] [20] [21]
Songs in the study populations were typically c. 2–2.5 seconds in duration. The whistled theme notes are each c. 0.25–0.5 s in duration and are 2–3 in number in typical songs (from a sample of 1764 individuals, mean # notes/song = 2.87: 1-note themes – 0.5%; 2-note – 27.6%; 3-note – 58%; 4-note – 13%; 5-note – 0.8%; 7-note – 0.1%).

These notes are either 1) level, 2) rising, 3) falling, or 4) rising then falling in pitch. Absolute abundance of these note types: 1) – 15.9%; 2) – 32.0%; 3) – 39.8%; 4) – 11.4%. On a notes per song basis, note-type frequency is: 1) – 0.46; 2) – 0.92; 3) – 1.14; 4) – 0.32. Most of the energy in these notes lies between 4 and 6 kHz, with a range of 2.27–8.8 kHz. The terminal trill comprises several to many near-identical elements, which are descending frequency sweeps, with a maximum frequency of 3.8–8.7 kHz and a minimum frequency of 2.4–4.9 kHz.

Singing male (Museu Paulista park, Sao Paulo, Brazil) TICO-TICO (Zonotrichia capensis ) (2195772708).jpg
Singing male (Museu Paulista park, São Paulo, Brazil)

Singing behaviour:
Individuals were found to sing for up to 30 minutes at a time, though usually 2–5 minutes. Countersinging is evident, though not well-studied. Singing-rate is regular, and usually 10–12 per minute. Typically from some elevated point, where available – a large rock, bush, etc. In open scrub and grassland, will sing from stem-tops. In suburban situations, will sing from low branches of trees, walls, sheds, etc. Individuals have "favourite" singing points, used repeatedly both within and among seasons. Flight songs have been recorded in migrating groups; these songs seem to be longer and more complex than typical territorial songs, and resemble night songs. Night singing is recorded, though it is rare and unpredictable. Anecdotal evidence suggests that it may relate to stress. Night songs are typically unlike daytime songs, being longer and more complex.

While chingolos are most active in their singing near dawn, they demonstrate strong or persistent singing throughout the day during the primary season from September to January, barring excessively high mid-day temperatures exceeding 30°C (86°F). There is a modest increase in singing activity again in the evening hours.

Variation

In some areas (in arid parts of northwest Argentina, eastern Patagonia, and certain sites in Costa Rica) there is often or always no terminal trill and the song comprises whistles only. A few individuals in some few localities—so far only in montane grasslands—show two terminal trills, the first rapid, the second substantially slower.

Females apparently do not sing, though this is not known with certainty. So far as is known (based on the Ph.D. thesis studies of Tubaro [22] ), the development of vocal abilities seems to be very similar to the white-crowned sparrow (Z. leucophrys).

In the best-studied populations, in north-west Argentina, songs appear highly stereotyped, with the great majority of individuals showing a single song. There is good evidence that this song does not change over the years, at least after first breeding. However, there is evidence from Ecuador that tropical populations show individual repertoires of up to seven diverse song types.

Seasonal variation is very little studied. There is unpublished evidence that in Patagonian populations in the early season, individuals may sing more than one song. But this phenomenon seems to disappear by the time the breeding season is properly underway.

Vocal dialects

This ecologically catholic neotropical songbird provides perhaps one of the clearest and most widely distributed habitat-related dialect systems. The geographic variation in the song of this species became apparent over 30 years ago with F. Nottebohm's study [19] in subtropical and temperate Argentina. He interpreted his findings largely in the context established a few years before in the white-crowned sparrow, [23] that is, he suggested that these dialects perhaps serve to enhance the genetic integrity of local populations. The first direct investigation of this possibility, [24] while providing no support for what came to be called the "genetic adaptation hypothesis" (GAH), which explains the vocal dialects of the brown-headed cowbird (Molothrus ater) well. [25] [ clarification needed ] showed that the spatial organisation of song variation was very closely associated with the distribution of distinct habitat types. Moreover, the structural characteristics of the dialect variable (trill interval) showed variation largely consistent with the interspecific acoustic patterns described by E.S. Morton, [26] that is, in general, the trill interval varied from short (c. 50 ms; rapid trills) in open grasslands to long (1–200 ms; slow whistles) in woodlands and forests.

This ecological dimension was explored further by Handford and students in the highly diverse habitats of northwestern Argentina. They showed that the ecological ordering of dialect variation [21] [27] [28] [29] over a huge geographical space (1,200 km × 350 km or 750 mi × 220 mi) and across a dramatic sweep of structurally distinct habitats (puna scrub, grassland, desert scrub, thorn woodland, and drought-deciduous forest (see Figure) was largely consistent with the previously established picture. This work also demonstrated that these spatial patterns show temporal stability of at least 20 years (now known to exceed 30 years), and stability on the order of centuries is implied by the persistence of certain habitat dialects long after the native vegetation has been removed by agriculture. [28] This massive demonstration of acoustically rational habitat-based song variation strongly supports what is now known as the Acoustic Adaptation Hypothesis. [25] However, the work also provided a basis for a final evaluation of the GAH on a similar geographical scale. [30] This study showed that the substantial genetic variation shown by the species is organised largely by distance; dialect songs impose no further structure: it seems that for this species the GAH has no explanatory value.

The most recent work on this species confirms that the clear ecological segregation of acoustically rational vocal dialects in Argentina extends from 22ºS at the Bolivian border south to 42ºS in northern Patagonia. Across this vast space, the greatest song diversity is concentrated in the vegetationally diverse north west; in the ecologically more uniform central and southern regions, great song uniformity is encountered; finally, island habitats, such as montane grasslands, are represented by repeated islands of the specific song dialect. Other recent work suggests, however, that the tropical populations (Ecuador) do not show this pattern: instead, individuals show repertoires (from 1–7 trill-types; mean = c. 4) and local populations can show nearly as much trill variation as is known from all Argentina.

See also

Related Research Articles

<span class="mw-page-title-main">White-throated sparrow</span> Species of bird

The white-throated sparrow is a passerine bird of the New World sparrow family Passerellidae. It breeds in northern North America and winters in the southern United States.

<span class="mw-page-title-main">White-crowned sparrow</span> Species of bird

The white-crowned sparrow is a species of passerine bird native to North America. A medium-sized member of the New World sparrow family, this species is marked by a grey face and black and white streaking on the upper head. It breeds in brushy areas in the taiga and tundra of the northernmost parts of the continent and in the Rocky Mountains and Pacific coast. While southerly populations in the Rocky Mountains and coast are largely resident, the breeding populations of the northerly part of its range are migratory and can be found as wintering or passage visitors through most of North America south to central Mexico.

<span class="mw-page-title-main">Song sparrow</span> Species of bird

The song sparrow is a medium-sized New World sparrow. Among the native sparrows in North America, it is easily one of the most abundant, variable and adaptable species.

<span class="mw-page-title-main">Chipping sparrow</span> Species of bird

The chipping sparrow is a species of New World sparrow, a passerine bird in the family Passerellidae. It is widespread, fairly tame, and common across most of its North American range.

<span class="mw-page-title-main">Savannah sparrow</span> Species of bird

The Savannah sparrow is a small New World sparrow that is the only member of the genus Passerculus. It is a widespread and abundant species that occupies open grassland habitats in North America.

<span class="mw-page-title-main">Grasshopper sparrow</span> Species of bird

The grasshopper sparrow is a small New World sparrow. It belongs to the genus Ammodramus, which contains three species that inhabit grasslands and prairies. Grasshopper sparrows are sometimes found in crop fields and they will readily colonize reclaimed grassland. In the core of their range, grasshopper sparrows are dependent upon large areas of grassland where they avoid trees and shrubs. They seek out heterogenous patches of prairie that contain clumps of dead grass or other vegetation where they conceal their nest, and also contain barer ground where they forage for insects, spiders, and seeds. Grasshopper sparrows are unusual among New World sparrows in that they sing two distinct song types, the prevalence of which varies with the nesting cycle. The primary male song, a high trill preceded by a stereotyped series of short chips, is reminiscent of the sounds of grasshoppers and is the origin of this species' name. Like some other birds of the central North American grasslands, this species also moves around a lot, not only via annual migrations, but individuals frequently disperse between breeding attempts or breeding seasons. Grasshopper sparrows are in steep decline across their range, even in the core of the breeding distribution in the tallgrass prairies of the central Great Plains. The Florida grasshopper sparrow is highly endangered.

<span class="mw-page-title-main">Field sparrow</span> Species of bird

The field sparrow is a small New World sparrow in the family Passerellidae. It is about 140 mm (6 in) long and weighs about 12.5 g (0.4 oz). The head is grey with a rust-coloured crown, white eye-ring and pink bill. The upper parts are brown streaked with black and buff, the breast is buff, the belly is white and the tail is forked. There are two different colour morphs, one being greyer and the other more rufous.

<span class="mw-page-title-main">Animal song</span>

Animal song is not a well-defined term in scientific literature, and the use of the more broadly defined term vocalizations is in more common use. Song generally consists of several successive vocal sounds incorporating multiple syllables. Some sources distinguish between simpler vocalizations, termed “calls”, reserving the term “song” for more complex productions. Song-like productions have been identified in several groups of animals, including cetaceans, avians (birds), anurans (frogs), and humans. Social transmission of song has been found in groups including birds and cetaceans.

<span class="mw-page-title-main">Iago sparrow</span> Species of bird

The Iago sparrow, also known as the Cape Verde or rufous-backed sparrow, is a passerine bird of the sparrow family Passeridae. It is endemic to the Cape Verde archipelago, in the eastern Atlantic Ocean near western Africa. Females and young birds have brown plumage with black marks above, and a dull grey underside, and are distinguished from other species of sparrow by their large, distinct supercilium. Males have a brighter underside and bold black and chestnut stripes on their head. At 12.5–13 centimetres (4.9–5.1 in) long, it is a smaller sparrow. This bird's vocalisations are mostly variations on its chirp, which differ somewhat between males and females.

<span class="mw-page-title-main">Golden-crowned sparrow</span> Species of bird

The golden-crowned sparrow is a large New World sparrow found in the western part of North America.

<span class="mw-page-title-main">Harris's sparrow</span> Species of bird

Harris's sparrow is a large sparrow. Their breeding habitat is the north part of central Canada, making it Canada's only endemic breeding bird. In the winter they migrate to the Great Plains states of the United States, from southern South Dakota to central Texas. The common name of this species commemorates the American amateur ornithologist Edward Harris (1799–1863).

<span class="mw-page-title-main">Rufous-crowned sparrow</span> Small passerine bird from the Southwestern United States and Mexico

The rufous-crowned sparrow is a small American sparrow. This passerine is primarily found across the Southwestern United States and much of the interior of Mexico, south to the transverse mountain range, and to the Pacific coast to the southwest of the transverse range. Its distribution is patchy, with populations often being isolated from each other. Twelve subspecies are generally recognized, though up to eighteen have been suggested. This bird has a brown back with darker streaks and gray underparts. The crown is rufous, and the face and supercilium are gray with a brown or rufous streak extending from each eye and a thick black malar streak.

<span class="mw-page-title-main">Cassin's sparrow</span> Species of bird

Cassin's sparrow is a medium-sized sparrow.

<span class="mw-page-title-main">Hispaniolan crossbill</span> Species of crossbill endemic to Hispaniola

The Hispaniolan crossbill is a crossbill that is endemic to the island of Hispaniola, and the only representative of the Loxia genus in the Caribbean.

Fernando Nottebohm is a neuroscientist. He serves as the Dorothea L. Leonhardt Professor at Rockefeller University, as well as being head of the Laboratory of Animal Behavior and director of the Field Research Center for Ecology and Ethology.

<span class="mw-page-title-main">Cape white-eye</span> Species of bird

The Cape white-eye is a small passerine bird in the white-eye family. It is native to southern Africa. It is commonly found in suburbia, parks and gardens, besides a variety of mesic to well-watered habitats.

<span class="mw-page-title-main">Worthen's sparrow</span> Species of bird

Worthen's sparrow is a species of American sparrow that is endemic to northeastern Mexico. It was first described by Robert Ridgway in 1884 and named for the American naturalist Charles K. Worthen. This small bird has been listed as endangered by the IUCN since 1994.

<span class="mw-page-title-main">Tawny-headed swallow</span> Species of bird

The tawny-headed swallow is a species of bird in the family Hirundinidae. It is the only species placed in the genus Alopochelidon. It is found in Argentina, Bolivia, Brazil, Colombia, Falkland Islands, Paraguay, Peru, Uruguay, and Venezuela, where its natural habitats are dry savanna and subtropical or tropical seasonally wet or flooded lowland grassland.

<span class="mw-page-title-main">Cuzco brushfinch</span> Species of bird

The Cuzco brushfinch, also known as the grey brushfinch or sooty brushfinch, is a species of bird in the family Passerellidae. It is endemic to humid Andean forest in southeastern Peru, where mainly found in Cusco. It is sometimes considered a subspecies of the slaty brushfinch.

James Roger King (1927–1991) was an American ornithologist, specializing in avian physiology.

References

  1. 1 2 BirdLife International (2020). "Zonotrichia capensis". IUCN Red List of Threatened Species . 2020: e.T22721079A138471375. doi: 10.2305/IUCN.UK.2020-3.RLTS.T22721079A138471375.en . Retrieved 11 November 2021.
  2. "rufous-collared sparrow | bird". Encyclopedia Britannica. Retrieved 9 March 2022.
  3. 1 2 Jeffrey V. Wells; Allison Childs Wells; Robert Dean (2017). Birds of Aruba, Bonaire, and Curacao: A Site and Field Guide. Cornell University Press. p. 22. ISBN   9781501712869.
  4. 1 2 Karel Beylevelt (1995). Nature Guide: Netherlands Antilles & Aruba. GMB. p. 75. ISBN   9789074345095.
  5. Rising, James D.; Jaramillo, Alvaro (2020). "Rufous-collared Sparrow (Zonotrichia capensis), version 1.0". Birds of the World. doi:10.2173/bow.rucspa1.01. S2CID   216286476.
  6. O'Shea, B.J.; Christopher, M.; Claramunt, Santiago; Schmidt, Brian K.; Gebhard, Christina A.; Schmitt, C. Gregory; Erskine, Kristine T. (2007). "New records for Guyana, with description of the voice of Roraiman Nightjar Caprimulgus whitelyi" (PDF). Bulletin of the British Ornithologists' Club . 127 (2): 118–128.
  7. Dod, Annabelle Stockton (1992). Endangered and Endemic Birds of the Dominican Republic. Cypress House. ISBN   1-879384-12-4.
  8. Machado, C.G. (1999). "A composição dos bandos mistos de aves na Mata Atlântica da Serra de Paranapiacaba, no sudeste brasileiro" [Mixed flocks of birds in Atlantic Rain Forest in Serra de Paranapiacaba, southeastern Brazil](PDF). Revista Brasileira de Biologia (in Portuguese and English). 59 (1). Instituto Internacional de Ecologia: 75–85. doi: 10.1590/S0034-71081999000100010 .
  9. Ragusa-Netto, J. (2000). "Raptors and "campo-cerrado" bird mixed flock led by Cypsnagra hirundinacea (Emberizidae: Thraupinae)". Revista Brasileira de Biologia (in English and Portuguese). 60 (3): 461–467. doi: 10.1590/S0034-71082000000300011 . hdl: 11449/28947 . PMID   11188872.
  10. Olson, Storrs L.; Alvarenga, Herculano M.F. (2006). "An extraordinary feeding assemblage of birds at a termite swarm in the Serra da Mantiqueira, São Paulo, Brazil" (PDF). Revista Brasileira de Ornitologia (in English and Portuguese). 14 (3). Sociedade Brasileira de Ornitologia: 297–299. Archived from the original (PDF) on 2008-12-17.
  11. 1 2 Greeney, Harold F.; Nunnery, Tony (2006). "Notes on the breeding of north-west Ecuadorian birds". Bulletin of the British Ornithologists' Club . 126 (1): 38–45.
  12. 1 2 Auer, Sonya K.; Bassar, Ronald D.; Fontaine, Joseph J.; Martin, Thomas E. (2007). "Breeding biology of passerines in a subtropical montane forest in Northwestern Argentina". Condor . 109 (2): 321–333. doi: 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2 . S2CID   3675989.
  13. Pena-Villalobos, I. F. (2013). "Osmoregulatory and metabolic costs of salt excretion in the rufous-collared sparrow zonotrichia capensis". Comparative Biochemistry and Physiology A. 164 (2): 314–318. doi:10.1016/j.cbpa.2012.10.027. hdl: 10533/129104 . PMID   23103672.
  14. Sabat, P. S. (2009). "Diet and habitat aridity affect osmoregulatory physiology: an intraspecific field study along environmental gradients in the rufous-collared sparrow". Comparative Biochemistry and Physiology A. 152 (3): 322–326. doi:10.1016/j.cbpa.2008.11.003. hdl: 10533/129096 . PMID   19041952.
  15. Maldonado, K. E. (2009). "Physiological responses in rufous-collared sparrows to thermal acclimation and seasonal acclimatization". Journal of Comparative Physiology B. 179 (3): 335–343. doi:10.1007/s00360-008-0317-1. hdl: 10533/127699 . PMID   19011873. S2CID   23391184.
  16. Novoa, F. F. (1990). "Maximum metabolic rate and temperature regulation in the rufous-collared sparrow, zonotrichia capensis, from central chile". Comparative Biochemistry and Physiology A. 95 (1): 181–183. doi:10.1016/0300-9629(90)90029-R.
  17. Cheviron, Zachary A.; Whitehead, Andrew; Brumfield, Robb T. (October 2008). "Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient". Molecular Ecology. 17 (20): 4556–4569. doi:10.1111/j.1365-294X.2008.03942.x. ISSN   1365-294X. PMID   18986500. S2CID   20880417.
  18. Castro, Gonzalo; Carey, Cynthia; Whittembury, Jose; Monge, Carlos (January 1985). "Comparative responses of sea level and montane rufous-collared sparrows, Zonotrichia capensis, to hypoxia and cold". Comparative Biochemistry and Physiology Part A: Physiology. 82 (4): 847–850. doi:10.1016/0300-9629(85)90493-1. ISSN   0300-9629.
  19. 1 2 3 Nottebohm, Fernando (1969). "The song of the chingolo, Zonotrichia capensis, in Argentina: description and evaluation of a system of dialects" (PDF). Condor . 71 (3): 299–315. doi:10.2307/1366306. JSTOR   1366306.
  20. King, J. R. (1972). "Variation in the song of the Rufous-collared sparrow, Zonotrichia capensis, in northwestern Argentina". Zeitschrift für Tierpsychologie. 30 (4): 344–373. doi:10.1111/j.1439-0310.1972.tb00863.x.
  21. 1 2 Handford, P.; Lougheed, Stephen C. (1991). "Variation in duration and frequency characters in the song of the Rufous-collared Sparrow, Zonotrichia capensis, with respect to habitat, trill dialects and body size" (PDF). Condor . 93 (3): 644–658. doi:10.2307/1368196. JSTOR   1368196.
  22. Tubaro, Pablo Luis (1990). Aspectos causales y funcionales de los patrones de variación del canto del chingolo (Zonotrichia capensis)[Causal and functional aspects of variation patterns in the Red-collared Sparrow's song] (Doctoral) (in Spanish). Faculty of Exact and Natural Sciences, University of Buenos Aires.
  23. Marler, P.; Tamura, M. (1962). "Song "dialects" in three populations of White-crowned sparrows" (PDF). Condor . 64 (5): 368–377. doi:10.2307/1365545. JSTOR   1365545.
  24. Handford, Paul; Nottebohm, Fernando (1976). "Allozymic and morphological variation in population samples of Rufous-collared Sparrows, Zonotrichia capensis, in relation to vocal dialects". Evolution . 30 (4): 802–817. doi:10.2307/2407819. JSTOR   2407819. PMID   28563321.
  25. 1 2 Rothstein, Stephen I.; Fleischer, Robert C. (1987). "Vocal dialects and their possible relation to honest status signalling in the brown-headed cowbird" (PDF). Condor . 89 (1): 1–23. doi:10.2307/1368756. JSTOR   1368756.
  26. Morton, E. S. (1975). "Ecological sources of selection on avian sounds". American Naturalist . 109 (965): 17–34. doi:10.1086/282971. JSTOR   2459634. S2CID   55261842.
  27. Handford, Paul (1981). "Vegetational correlates of variation in the song of Zonotrichia capensis". Behavioral Ecology and Sociobiology. 8 (3): 203–206. doi:10.1007/BF00299831. S2CID   43186313. (HTML abstract and first page image)
  28. 1 2 Handford, Paul (1988). "Trill rate dialects in the Rufous-collared Sparrow, Zonotrichia capensis, in north-western Argentina". Canadian Journal of Zoology . 66 (12): 2658–2670. doi:10.1139/z88-391.
  29. Lougheed, Stephen C.; Handford, Paul (1993). "Covariation of morphological and allozyme frequency characters in populations of the Rufous-collared sparrow, Zonotrichia capensis" (PDF). Auk . 110 (2): 179–188. JSTOR   4088546.
  30. Lougheed, Stephen C.; Handford, Paul (1992). "Vocal dialects and the structure of geographic variation in morphological and allozymic characters in the Rufous-collared Sparrow, Zonotrichia capensis". Evolution . 46 (5): 1443–1456. doi:10.2307/2409948. JSTOR   2409948. PMID   28568996.