Tensioned stone is a high-performance composite construction material: stone held in compression with tension elements. The tension elements can be connected to the outside of the stone, but more typically tendons are threaded internally through a drilled duct.
Tensioned stone can consist of a single block of stone, though drill limitations and other considerations mean it is typically an assembly of multiple blocks with grout between pieces. [1] Tensioned stone has been used in both vertical columns (posts), and in horizontal beams (lintels). It has also been used in more unusual stonemasonry applications: arch stabilization, foot bridges, granite flag posts, cantilevered sculptures, a space frame, and staircases.
Tensioned stone has an affiliation with massive precut stone, which is a central technique of modern load-bearing stonemasonry. It is also aligned with mass timber and straw structural insulated panels (SSIPs), which are all reconfigurations of traditional materials for modern construction. [2] [3]
Tensioning is achieved with steel tendons or rods that are either threaded through ducts within the stone elements or attached to the stone externally. [4] For internal tensioning, holes are drilled into the stone elements to form a duct; the tensioning tendon is threaded into the duct. [5]
The most common form of tensioned stone is post-tensioned stone, which also has the longest history. [6] A second method, developed in the early 2020s, is pre-tensioned stone. [7]
As with pre-stressed concrete, the pre- and post-tensioned methods can be used in different contexts: pre-tensioned stone may be more appropriate for prefabrication, while post-tensioning may be more suitable for on-site assembly. [8]
For post-tensioning, once the stone components are in place, the tendons are tensioned using hydraulic jacks, and the force is transferred to the stone through anchorages located at the ends of the tendons, usually in combination with a plate. [9] The tensioning process imparts a compressive force to the stone, which improves its capacity to resist tensile stresses that could otherwise cause cracking or failure. [10]
In pre-tensioned stone, the tendon (a steel rod) is held in tension with jacks while the remaining cavity in the duct is filled with epoxy grout. [7] After the epoxy has set, the ends of the rod are released from the jacks, placing the stone under compression. [7] A structural difference between pre- and post-tensioned stone is that, in the former, the tension element is adhered to the stone along its length, so compression is applied to the stone along the length of the duct, while in post-tensioned stone the pressure is applied through the end plates. [7]
Stone has great compressive strength, so is ideal in compressive structures like stone arches. [11] However, it has relatively weak flexural strength (compared to steel or wood), so in isolation cannot be safely used in wide spans under tension. [11]
"Post-tensioned stone increases the failure load of stone in bending, but also the stiffness of a structure by reducing joint cracking. This method of construction is widely used for concrete structures, but the advantages of using similar techniques with stone are only just being realised.". [4]
For concrete, this problem has been long solved: in addition to conventional tensile reinforcement, engineers developed prestressed concrete methods starting around 1888. Such tension-reinforced concrete applications combine compressive strength with pre-stressed tensile compression for combined strength much greater than either of the individual components, and have been in wide use for decades. One of the early concrete engineers Eugène Freyssinet improved concrete pre-stressing methods, and it is claimed that he also applied post-tensioned concrete methods to stone. [8] As for concrete, post-tensioning maintains stone in compression, thereby increasing its strength.
Stone is 'natural precast concrete' so only needs to be cut (and strength tested) and tensioned prior to use in construction. Compared to concrete and steel, post-tensioned stone production has dramatically lower energy costs, with concomitant lower carbon emissions. [12]
Post-tensioned stone has potential to replace steel-reinforced concrete in some contexts, as, according to structural engineer Steve Webb "a post-tensioned stone beam is as strong as steel". [13] "Post-tensioning offers new potential for the revival of masonry as a structural material". [14] Post-tensioned stone has the potential to be used in conjunction with massive precut stone in a range of designs.
In 2020, post-tensioned stone was featured prominently in "The New Stone Age" an exhibition at The Building Centre. [15]
Architect James Simpson writes:
"The term 'engineered timber' is already commonly used in construction, so why not a structural 'engineered stone'? ... The most exciting possibility for the stone industry... is the possible creation of a system of engineered stone for framed, or partly framed, structures. This would exploit the compressive strength of stone, which can be greater than that of concrete, combined with post-tensioning by stainless steel rods. Walls, columns, beams and slabs could all be made from small pieces of factory-sawn stone, cut and pre-drilled to a design of standard components." [16]
Compared to conventional stonemasonry, post-tensioned stone has substantial structural and weight benefits. [22] In addition, compared to standard stonemasonry, post-tensioned stone preassembly has at least three operational advantages [23]
The wide adoption of post-tensioned stone currently faces a number of challenges, including:
In the early 2020s, the dimension-stone industry in most countries was structured almost entirely for tiles and cladding.
Post-tensioned stone has been used in a range of applications. After experimental use in the 1990s, its application increased in the early 2020s in part due to awareness of the high carbon emissions associated with concrete.
Post-tensioned stone footbridges with spans up to 40 m have been built in Japan, Switzerland, Germany, and Spain, [14] and are sold commercially in spans of up to 20 m by Kusser Granitwerke.
While post-tensioned stone has only been used in new construction applications since the 1990s, post-tensioned masonry more generally dates back to at least the early 1800s: "In 1825 a posttensioning method for tunnelling under the River Thames was utilized in England. The project involved the construction of vertical tube caissons of 15m diameter and 21 m height. The 0.75m thick brick walls were reinforced and posttensioned with 25mm diameter wrought iron rods.". [29]
Seismic post-tensioning of brick and stone masonry buildings with steel bolts dates from at latest the 19th century, including following the Charleston earthquake of 1883, and on buildings in seismic regions of Italy. Seismic post-tensioning of masonry is done with considerably lower tension than pre-stressed concrete or modern tensioned stone.
In the mid-20th century, the Sydney Opera House shells were constructed from pre-cast concrete masonry beams that were assembled into a pointed-arch vault using post-tensioning. By 1982, post-tensioned masonry was sufficiently widespread to fill a book published by the Institution of Civil Engineers, though this was brick and precast concrete masonry. [30] In 1985 and 1986, structural engineer Remo Pedreschi and others published studies of post-tensioned brick. [31]
"Early experiments with posttensioned Indiana limestone units were sponsored by the Building Stone Institute in 1967 and by the Indiana Limestone Institute in 1970. In these programs, several posttensioned beams and slabs were fabricated and tested… The advantages of posttensioned stone are much the same as for concrete. It permits the stone to carry larger loads over longer spans than would be possible with conventional units. The stone units can be plant-fabricated in much larger units to span column to column in the building… A few structural applications have been built using beams for such building features as porticoes, where the live loads have been limited to roof loads and wind loads.". [33]
"A more than one hundred year old sandstone masonry building, … the GPO Tower will be strengthened with four vertical post-tensioning tendons, 19 diameter 0.5" strands each, and a number of horizontal prestressing bars diameter 35mm at floor levels. ... Special steel chairs will be used to anchor the tendons and spread the anchorage forces of 1,771 kN (400 kips). The anchorages of the unbonded tendons allow for monitoring and adjustment of the tendon forces to compensate volume changes of the sandstone, if necessary." [29]
"Punt da Suransuns is a stress-ribbon bridge with a span of 40 m … constructed with slabs of Andeer granite, which are prestressed over rectangular steel bars … When traversing the bridge the vertical oscillation can be felt, but pedestrians have commented that the bridge is not as flexible as it looks." [41]
"Imagine crane masts, bridges or space frames like the Eden Centre and Stadium Australia being formed with stone elements instead of steel. With a world-saving 75 per cent carbon reduction, inherent durability and fire resistance, we can put waste stone to use and make some really pretty structures." -Steve Webb [60]
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.
Masonry is the craft of building a structure with brick, stone, or similar material, including mortar plastering which are often laid in, bound, and pasted together by mortar. The term masonry can also refer to the building units themselves.
Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and joints' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering.
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.
Stonemasonry or stonecraft is the creation of buildings, structures, and sculpture using stone as the primary material. Stonemasonry is the craft of shaping and arranging stones, often together with mortar and even the ancient lime mortar, to wall or cover formed structures.
Rebar, known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar usually consists of steel bars which significantly increase the tensile strength of the structure. Rebar surfaces feature a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.
A beam is a structural element that primarily resists loads applied laterally across the beam's axis. Its mode of deflection is primarily by bending, as loads produce reaction forces at the beam's support points and internal bending moments, shear, stresses, strains, and deflections. Beams are characterized by their manner of support, profile, equilibrium conditions, length, and material.
Prestressed concrete is a form of concrete used in construction. It is substantially "prestressed" (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. It was patented by Eugène Freyssinet in 1928.
This page is a list of construction topics.
Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.
Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples include precast beams, and wall panels, floors, roofs, and piles. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site.
This is an alphabetical list of articles pertaining specifically to structural engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers.
In structural engineering, a prestressed structure is a load-bearing structure whose overall integrity, stability and security depend, primarily, on prestressing: the intentional creation of permanent stresses in the structure for the purpose of improving its performance under various service conditions.
Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials resist and support loads.
In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy. It was approved by the European Committee for Standardization (CEN) on 16 April 2004 to enable designers across Europe to practice in any country that adopts the code.
Kolbjørn Saether P.E., M.ASCE was an American structural engineer in the City of Chicago for 47 years. Saether dedicated his life to engineering and was known as a leader in his field. He was a past director of the Structural Engineers Association of Illinois and was the organization's president from 1980 to 1981. During his career he developed innovative engineering solutions for skyrise building construction that are now part of the Chicago skyline, published theoretical insights to enhance the state of the art in structural engineering, and patented novel techniques to advance the art of building construction.
This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see Glossary of engineering for a broad overview of the major concepts of engineering.
This page is a glossary of Prestressed concrete terms.
Jürg Conzett is a Swiss civil engineer known for designing bridges. After studying at the ETH Zurich and working for architect Peter Zumthor, Conzett started his own civil engineering office in 1988. Perhaps his best known works are a series of three pedestrian bridges located on the Veia Traversina trail of the Viamala in Switzerland. Though many of Conzett's works are in Switzerland, he has designed bridges elsewhere.
Massive-precut stone is a modern stonemasonry method of building with load-bearing stone. Precut stone is a DFMA construction method that uses large machine-cut dimension stone blocks with precisely defined dimensions to rapidly assemble buildings in which stone is used as a major or the sole load-bearing material.