Tetragonula hockingsi

Last updated

Tetragonula hockingsi
Tetragonula hockingsi f.jpg
Lateral view - female worker
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Apidae
Tribe: Meliponini
Genus: Tetragonula
Species:
T. hockingsi
Binomial name
Tetragonula hockingsi
Cockerell, 1929
Region Map of T. hockingsi.png
Range of T. hockingsi [1]

Tetragonula hockingsi (Cockerell, 1929) is a small stingless bee native to Australia. It is found primarily in Queensland. [2] The colonies can get quite large, with up to 10,000 workers and a single queen. [3] [4] Workers of Tetragonula hockingsi have been observed in fatal fights with other Tetragonula species, where the worker bees risk their lives for the potential benefit of scarce resources. [3]

Contents

Taxonomy and phylogeny

Tetragonula hockingsi is a stingless bee, and thus belongs to the tribe Meliponini, which includes about 500 species. T. hockingsi belongs to the genus Tetragonula . The species is named in honour of Harold J. Hockings, who documented numerous early observations on Australia's stingless bee species, his notes of which were published in 1884. [5]

Reclassification

Tetragonula hockingsi was previously known as Trigona hockingsi, however this species was recently reclassified according to Charles Duncan Michener. [6] In 1961, Brazilian bee expert, Professor J.S. Moure, first proposed the subgenus name Tetragonula. [2] It was an effort to improve the classification system by dividing the huge genus Trigona into subgenera. This classification, supported by Michener's classification, splits Trigona into 9 smaller subgenera. [6] The subgenus Tetragonula includes about 30 other stingless bee species that are found in Oceania, in countries ranging from Australia, Indonesia, New Guinea, Malaysia, Thailand, the Philippines, India, Sri Lanka, and The Solomon Islands. [2]

Description and identification

A male T. hockingsi drone Tetragonula hockingsi m.jpg
A male T. hockingsi drone

T. hockingsi is diagnosed by jet black body colour. The side of the thorax is densely and evenly covered with fine, short hair, which distinguishes the species from T. clypearis and T. sapiens . The only distinction in appearance between T. carbonaria is that T. hockingsi is larger. [2]

Identification

The female worker has a typical body length of 4.1-4.5 mm, and an average wing length of 4.4-4.7 mm, including the tegula. The mesopleuron and metapleuron are covered with fine hair. The malar space is also hairy and relatively long, and the mesoscutum does not have distinct glabrous bands. [2]

The male drone has a typical body length of 4.0-4.4 mm, and an average wing length of 4.5-4.7 mm. The male hind tibia is particularly wide and flat, and the last tergum is apically rounded and not beaked. [2]

Distribution and habitat

Distribution

Bees of the genus Tetragonula are commonly found throughout the tropics. [7] T. hockingsi bees like to nest in hollow dead trees or logs. [8] T. hockingsi is common in northern Australia, particularly throughout parts of Northern Territory and north coastal Queensland. [7]

Nest Structure

Tetragonula Hockingsi Brood Structure - ABeeC Hives Tetragonula Hockingsi Brood Structure.jpg
Tetragonula Hockingsi Brood Structure - ABeeC Hives
The OATH hive is a man made home for Tetragonula Hockingsi bees. The three sections make it possible to duplicate the colony by splitting and collect honey. OATH Beehive.jpg
The OATH hive is a man made home for Tetragonula Hockingsi bees. The three sections make it possible to duplicate the colony by splitting and collect honey.

In T. hockingsi, the brood cells are shaped in small irregular horizontal combs. [2] This is in contrast to T. carbonaria , where larval cells are constructed along a spiral horizontal comb. [11] Further, the species lacks a projecting, external entrance tunnel. [2] The combs of the nest are extremely important as they provide the substrate on which workers live, food is stored and the brood is reared. Further, the wax itself plays a vital role in the dispersal of pheromones and creates a specific nest odour. T. hockingsi has little, or even no lining of resin and wax at the entrance holes to its nests. [11]

Colony Cycle

All stingless bees of the tribe Meliponini build cells in a brood chamber within the nest, unlike bees of other tribes. They do not reuse these brood cells but constantly build new cells. The brood chamber is surrounded by the involucrum, which is a multilayered envelope. T. hockingsi constructs brood combs during the Provisioning and Ovipositioning Process (POP). First, workers construct a new brood cell and provision the cell with liquid food. Next, the queen lays an egg in the provisioned cell on top of the food. Finally, the workers cap and seal the brood cell, and the POP is complete. [4]

Tetragonula hockingsi has an ancestral approach to its construction of brood cells. They build loose aggregation of cells with a lot of spaces between adjacent cells. The cells are built randomly within the layers, which are horizontal planes of clusters of cells. The brood layers are supported by pillars, which are vertical wax structures; pillars also provide a connector, allowing the movement of bees between layers. Only a small proportion of the workers are involved in cell construction. The median diameter of brood cells for T. hockingsi is 3.35 mm, and the median height is 4.0 mm. [4]

Behaviour

Foraging Patterns

As is typical in stingless bees, individual workers make decisions that affect the foraging patterns of the colony. The decisions are based on the environment and information from the colony, as well as intrinsic factors. T. hockingsi colonies show distinct diurnal patterns of foraging, determined by environmental cues such as resource availability, solar radiation, temperature, and wind speed. The species showed the highest level of pollen collection in the morning. However, resin foraging was stable over time and there were no noticeable peaks of activity. [8]

Kin Selection

Worker Queen Conflict

Under monogyny and monandry, the worker typically produces the males rather than the queen. However, in T. hockingsi, worker-produced males are almost never found, which is common amongst Australian stingless bees. [12]

Interaction with other species

Predators

The typical predators for T. hockingsi include many of the same predators for other Meliponini species, such as birds, lizards, spiders, and mammals. [13] As with other stingless bee species, they do not have a great defense against predators.

Diet

Tetragonula hockingsi is a generalist species, meaning they can thrive in various environmental conditions by making use of many different resources. As such, they visit a wide variety of plants. The species particularly forages the fruits of the plant species C. torelliana until the resin resource is completely depleted. T. hockingsi exhibits a peak of waste removal and seed dispersal in the morning, which differs from that of related species T. sapiens , which displays peaks in the afternoon. In some studies, high waste removal activity encouraged inexperienced foragers to start foraging. Waste removal activity is important for the dispersal of seeds of Corymbia torelliana , including the unusual seed dispersal syndrome of mellitochory. [8]

Plant Resin

Plant resins are an extremely important resource for T. hockingsi. They are used for everything from nest building to colony defense, and resin availability limits colony size and growth. These resin resources are crucial, especially since their availability is generally unpredictable. [8]

Defence

Small fighting swarms, called skirmishes, are common amongst Tetragonula bees. Sometimes, these skirmishes escalate into far larger battles and can lead to the deaths of hundreds of bees. Intercolony battles in Tetragonula bees can even result in the usurpation of the defeated hive by the winning colony, which then assumes the territory, resources, and nest. [3]

Typically, T. hockingsi colonies invade local T. carbonaria hives. A common strategy is that T. hockingsi workers eject T. carbonaria young adults from the hive, which results in a shorter and less costly fight. The T. hockingsi colony still takes control of the hive entrance, but many fewer bees die in this type of battle. In their victory, the resources gained include pollen, propolis, and honey stores. This significant reward might explain why workers are willing to self-sacrifice in both the attack and defense of a nest. [3]

Evolution of Fatal Fighting

In the fighting swarms between Tetragonula colonies, the attacking hive faces an immense risk of death of its workers. Fatal fighting is not common in nature, and the evolution may be due to the value of the resource exceeding the value of the individual worker's life. The benefits to each individual in the attacking hive of gaining resources and colony security must outweigh the risks of a substantial loss of workers. It is believed that the fighting swarms between Tetragonula colonies have evolved as a behavioural strategy. Usurpation may have evolved from behaviours such as territorial attacks, nest raiding, nest site location, or reproductive swarming. [3]

Human Importance

Example of beekeeping Bee keeping at Primrose Cottage, Little OAKLEY, Northants..jpg
Example of beekeeping

Beekeeping

T. hockingsi is a great bee for beekeeping, and beekeepers often keep one colony. It is typical to keep the stingless bees in a log nest, instead of attempting to transfer the colony. Stingless beekeeping in Australia is fairly novel. [14] As of 2013, there were more than 600 commercial hives containing Australian stingless bees of the subgenus Tetragonula. [3]

Related Research Articles

<span class="mw-page-title-main">Beekeeping</span> Human care of honey bees

Beekeeping is the maintenance of bee colonies, commonly in man-made beehives. Honey bees in the genus Apis are the most commonly kept species but other honey producing bees such as Melipona stingless bees are also kept. Beekeepers keep bees to collect honey and other products of the hive: beeswax, propolis, bee pollen, and royal jelly. Pollination of crops, raising queens, and production of package bees for sale are other sources of beekeeping income. Bee hives are kept in an apiary or "bee yard".

<span class="mw-page-title-main">Stingless bee</span> Tribe of bees with reduced stingers, but strong bites

Stingless bees, sometimes called stingless honey bees or simply meliponines, are a large group of bees, comprising the tribe Meliponini. They belong in the family Apidae, and are closely related to common honey bees, carpenter bees, orchid bees, and bumblebees. Meliponines have stingers, but they are highly reduced and cannot be used for defense, though these bees exhibit other defensive behaviors and mechanisms. Meliponines are not the only type of bee incapable of stinging: all male bees and many female bees of several other families, such as Andrenidae, also cannot sting. Some stingless bees have powerful mandibles and can inflict painful bites.

<i>Tetragonula carbonaria</i> Species of bee

Tetragonula carbonaria is a stingless bee, endemic to the north-east coast of Australia. Its common name is sugarbag bee. They are also occasionally referred to as bush bees. The bee is known to pollinate orchid species, such as Dendrobium lichenastrum, D. toressae, and D. speciosum. It has been identified as an insect that collects pollen from the cycad Cycas media. They are also known for their small body size, reduced wing venation, and highly developed social structure comparable to honey bees.

<i>Trigona spinipes</i> Species of bee

Trigona spinipes is a species of stingless bee. It occurs in Brazil, where it is called arapuá, aripuá, irapuá, japurá or abelha-cachorro ("dog-bee"). The species name means "spiny feet" in Latin. Trigona spinipes builds its nest on trees, out of mud, resin, wax, and assorted debris, including dung. Therefore, its honey is not fit for consumption, even though it is reputed to be of good quality by itself, and is used in folk medicine. Colonies may have from 5,000 to over 100,000 workers.

<i>Tetragonisca angustula</i> Species of bee

Tetragonisca angustula is a small eusocial stingless bee found in México, Central and South America. It is known by a variety of names in different regions. A subspecies, Tetragonisca angustula fiebrigi, occupies different areas in South America and has a slightly different coloration.

<i>Tetragonula iridipennis</i> Species of bee

The Indian stingless bee or dammar bee, Tetragonula iridipennis, is a species of bee belonging to the family Apidae, subfamily Apinae. It was first described by Frederick Smith in 1854 who found the species in what is now the island of Sri Lanka. Many older references erroneously placed this species in Melipona, an unrelated genus from the New World, and until recently it was placed in Trigona, therefore still often mistakenly referred to as Trigona iridipennis. For centuries, colonies of T. iridipennis have been kept in objects such as clay pots so that their highly prized medicinal honey can be utilized.

<i>Melipona bicolor</i> Species of bee

Melipona bicolorLepeletier, 1836, commonly known as Guaraipo or Guarupu, is a eusocial bee found primarily in South America. It is an inhabitant of the Araucaria Forest and the Atlantic Rainforest, and is most commonly found from South to East Brazil, Bolivia, Argentina, and Paraguay. It prefers to nest close to the soil, in hollowed trunks or roots of trees. M. bicolor is a member of the tribe Meliponini, and is therefore a stingless bee. This species is unique among the stingless bees species because it is polygynous, which is rare for eusocial bees.

<i>Plebeia remota</i> Species of bee

Plebeia remota is a species of stingless bee that is in the family Apidae and tribe Meliponini. Bees of the species are normally found in a few states in southern Brazil and their nests can be found in tree cavities. Depending on the region, P. remota may have a different morphology and exhibit different behaviors. The bee's diet consists of nectar and pollen that are collected intensely from a few sources. Researchers have conducted a multitude of studies analyzing the changes that occur in the colony during reproductive diapause and what happens during the provisioning and oviposition process or POP.

<i>Melipona beecheii</i> Species of bee

Melipona beecheii is a species of eusocial stingless bee. It is native to Central America from the Yucatán Peninsula in the north to Costa Rica in the south. M. beecheii was cultivated in the Yucatán Peninsula starting in the pre-Columbian era by the ancient Maya civilization. The Mayan name for M. beecheii is xunan kab, which translates roughly to "regal lady bee". M. beecheii serves as the subject of various Mayan religious ceremonies.

<i>Trigona corvina</i> Species of bee

Trigona corvina is a species of stingless bee that lives primarily in Central and South America. In Panama, they are sometimes known as zagañas. They live in protective nests high in the trees, but they can be extremely aggressive and territorial over their resources. They use their pheromones to protect their food sources and to signal their location to nest mates. This black stingless bees of the tribe Meliponini can be parasitic toward citrus trees but also helpful for crop pollination.

<i>Nannotrigona testaceicornis</i> Species of bee

Nannotrigona testaceicornis is a eusocial stingless bee species of the order Hymenoptera and the genus Nannotrigona. Its local common name is abelhas iraí. This species has a large geographic distribution and occupies different biomes, including urban areas, around Neotropical America. The bees of this species nest in trees or artificial cavities because of this broad distribution. N. testaceicornis is important for agriculture because it will pollinate a vast number of plant species year round.

<i>Paratrigona subnuda</i> Species of bee

Paratrigona subnuda, commonly known as the jataí-da-terra, is a species of eusocial stingless bee in the family Apidae and tribe Meliponini. These social bees are prevalent in Neotropical moist forests, including Brazilian Atlantic and other South American forests. They inhabit spherical nests in moist underground environments with their forest habitats. Within their Neotropical habitats the P. subnuda is considered to be a very successful and common species of bee. P. subnuda’s main source of food is pollen and nectar from a large variety of native Mesoamerican tropical plants. They have been extensively studied due to social conflicts arising from single mate behaviors and particular virgin behaviors. P. subnuda also exhibits the particular daily behavior in which they open the nest entrance at dawn and close the entrance at dusk when all their activities are done.

<i>Melipona quadrifasciata</i> Species of bee

Melipona quadrifasciata is a species of eusocial, stingless bee of the order Hymenoptera. It is native to the southeastern coastal states of Brazil, where it is more commonly known as mandaçaia, which means "beautiful guard," as there is always a bee at the narrow entrance of the nest. M. quadrifasciata constructs mud hives in the hollows of trees to create thin passages that only allow one bee to pass at a time. Because they are stingless bees, M. quadrifasciata is often used as pollinators in greenhouses, outperforming honey bees in efficiency and leading to overall larger yields of fruits that were heavier, larger, and contained more seeds.

<i>Tetragonula</i> Genus of bees

Tetragonula is a genus of stingless bees. In 1961, Brazilian bee expert J.S. Moure first proposed the genus name Tetragonula to improve the classification system by dividing the large genus Trigona stingless bees into 9 smaller groups. About 30 stingless bee species formerly placed in the genus Trigona are now placed in the genus Tetragonula. These bees are found in Oceania, in countries such as Australia, Indonesia, New Guinea, Malaysia, Thailand, the Philippines, India, Sri Lanka, and the Solomon Islands. The most recent tabulation of species listed 31 species.

<i>Melipona scutellaris</i> Species of bee

Melipona scutellaris is a eusocial stingless bee species of the order Hymenoptera and the genus Melipona. It is considered to be the reared Melipona species with the largest distribution in the North and Northeast regions of Brazil, with records from Rio Grande do Norte down to Bahia. Its common name, Uruçu, comes from the Tupi "eiru su", which in this indigenous language means "big bee". Their honey is highly desirable and the materials they create for nests have been proven to be a promising source of antibiofilm agents and to present selectivity against human cancer cell lines at low concentrations compared to normal cells.

<i>Trigona fuscipennis</i> Species of bee

Trigona fuscipennis is a stingless bee species that originates in Mexico but is also found in Central and South America. They are an advanced eusocial group of bees and play a key role as pollinators in wet rainforests. The species has many common names, including mapaitero, sanharó, abelha-brava, xnuk, k'uris-kab, enreda, corta-cabelo, currunchos, zagaño, and enredapelos.

<i>Trigona fulviventris</i> Species of bee

Trigona fulviventris, known by the common names culo-de-vaca, culo-de-señora, mu'ul-kab, culo-de-buey, and culo-de-vieja, is a species of stingless bee found in Mexico and neotropical regions of Central and South America. It is one of the largest and most widespread bees of its genus. They exhibit complex foraging behaviors by integrating spatio-temporal learning and flower scents. T. fulviventris has traditionally been observed to abstain from aggressive behavior with other species; however, more recent analyses have shown that T. fulviventris emit pheromones that act as attack signals particularly when related individuals are captured by predators.

<i>Austroplebeia</i> Genus of insects

Austroplebeia is a stingless bee (Meliponini) genus in the family Apidae. The genus was erected by Jesus Santiago Moure in 1961. The genus comprises five described species endemic to Australia and New Guinea.Austroplebeia are more closed related to the African stingless bees than rest of the species found in Asia and Australia.

<i>Austroplebeia australis</i> Species of bee

Austroplebeia australis is a stingless bee species in the tribe Meliponini first validly described by Heinrich Friese in 1898. Within Australia, they are occasionally referred to as bush bees.

<i>Tetragonula mellipes</i> Species of stingless bee

Tetragonula mellipes is a small eusocial stingless bee first described by Friese in 1898 and it is found in Northern Australia.

References

  1. GBIF Secretariat: GBIF Backbone Taxonomy, 2013-07-01. Accessed via https://www.gbif.org/species/5801043 on 2015-10-10
  2. 1 2 3 4 5 6 7 8 Dollin, A., Walker, K. & Heard, T. (2009) "hockingsi" Sugarbag bee (Tetragonula hockingsi) Updated on 12/9/2011 2:27:22 PM Available online: PaDIL - http://www.padil.gov.au
  3. 1 2 3 4 5 6 Cunningham, John P.; Hereward, James P.; Heard, Tim A.; De Barro, Paul J.; West, Stuart A. (2014). "Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees" (PDF). The American Naturalist. The University of Chicago Press. 184 (6): 777–786. doi:10.1086/678399. eISSN   1537-5323. ISSN   0003-0147. PMID   25438177. S2CID   12764878. ResearchGate Publication 269412794
  4. 1 2 3 Brito, Rute M., et al. "Brood comb construction by the stingless bees Tetragonula hockingsi and Tetragonula carbonaria." Swarm Intelligence 6.2 (2012): 151-176.
  5. Hockings, Harold J. (1884). "XI. Notes on two Australian species of Trigona. By Harold J. Hockings". Transactions of the Royal Entomological Society of London. 32 (1): 149–157. doi:10.1111/j.1365-2311.1884.tb01606.x. ISSN   0035-8894.
  6. 1 2 Michener, Charles Duncan (2007) [1st pub. 2000]. The bees of the world (2nd ed.). Baltimore, Md.: Johns Hopkins University Press. ISBN   978-0801885730.
  7. 1 2 Gardener, Mark C.; Rowe, Richard J.; Gillman, Michael P. (2003-03-01). "Tropical Bees (Trigona hockingsi) Show No Preference for Nectar with Amino Acids". Biotropica. 35 (1): 119–125. doi:10.1111/j.1744-7429.2003.tb00269.x. JSTOR   30043041. S2CID   86093388.
  8. 1 2 3 4 Wallace, Helen M.; Lee, David J. (2010-07-01). "Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae)" (PDF). Apidologie. 41 (4): 428–435. doi:10.1051/apido/2009074. S2CID   37861915.
  9. "Stingless Bees". ABeeC Hives - Australian Native Bee Hives. Retrieved 2022-08-01.
  10. "OATH Beehives". ABeeC Hives - Australian Native Bee Hives. Retrieved 2022-08-01.
  11. 1 2 Franck, P.; et al. (2004). "Nest architecture and genetic differentiation in a species complex of Australian stingless bees". Molecular Ecology. 13 (8): 2317–2331. doi:10.1111/j.1365-294X.2004.02236.x. eISSN   1365-294X. ISSN   0962-1083. PMID   15245404. S2CID   33790632.
  12. Palmer, Kellie A.; Oldroyd, Benjamin P.; Quezada-Euán, José Javier G.; Paxton, Robert J.; May-Itza, William De J. (2002). "Paternity frequency and maternity of males in some stingless bee species". Molecular Ecology. 11 (10): 2107–2113. doi:10.1046/j.1365-294x.2002.01589.x. PMID   12296952. S2CID   44571939.
  13. Hilário, S.D.; Imperatriz-Fonseca, V.L. (2003). "Thermal Evidence of the Invasion of a Stingless Bee Nest by a Mammal" (PDF). Brazilian Journal of Biology. 63 (3): 457–462. doi: 10.1590/s1519-69842003000300011 . PMID   14758704.
  14. Heard, Tim A.; Dollin, Anne E. (2000). "Stingless bee keeping in Australia: snapshot of an infant industry". Bee World. Taylor & Francis. 81 (3): 116–125. doi:10.1080/0005772x.2000.11099481. ISSN   0005-772X. S2CID   55460233. ResearchGate Publication 277616572