Influenza (flu) |
---|
Treatments for influenza include a range of medications and therapies that are used in response to disease influenza. Treatments may either directly target the influenza virus itself; or instead they may just offer relief to symptoms of the disease, while the body's own immune system works to recover from infection. [1]
The main classes of antiviral drugs used against influenza are neuraminidase inhibitors, such as zanamivir and oseltamivir, polymerase acidic endonuclease inhibitors such as baloxavir marboxil, or inhibitors of the viral M2 protein, such as amantadine and rimantadine. These drugs can reduce the severity of symptoms if taken soon after infection and can also be taken to decrease the risk of infection. However, virus strains have emerged that show drug resistance to some classes of drug.
The United States authority on disease prevention, the Centers for Disease Control and Prevention (CDC), recommends that people with influenza infections:
Warning signs are symptoms that indicate that the disease is becoming serious and needs immediate medical attention. These include:[ citation needed ]
In children other warning signs include irritability, failing to wake up and interact, rapid breathing, and a blueish skin color. Another warning sign in children is if the flu symptoms appear to resolve, but then reappear with fever and a bad cough. [2]
Antiviral drugs directly target the viruses responsible for influenza infections. Generally, anti-viral drugs work optimally when taken within a few days of the onset of symptoms. [3] Certain drugs are used prophylactically, that is they are used in uninfected individuals to guard against infection.[ medical citation needed ]
Four licensed influenza antiviral agents are available in the United States: zanamivir, oseltamivir phosphate, peramivir, and baloxavir marboxil. [4] They are available through prescription only. [4]
Class | Effective Against | Drug Name (INN) | Brand Name | Year Approved | Manufacturer |
---|---|---|---|---|---|
Neuraminidase inhibitors | Influenza A & B | zanamivir | Relenza | 1999 | GlaxoSmithKline |
oseltamivir | Tamiflu | 1999 | Hoffmann-La Roche | ||
peramivir | Rapivab | 2014 | BioCryst Pharmaceuticals | ||
Cap-dependent endonuclease inhibitor | Influenza A & B | baloxavir marboxil | Xofluza | 2018 | Shionogi Pharma Co., Ltd. |
In Russia and China a drug called arbidol is also used as a treatment. Testing of the drug has predominantly occurred in these countries and, although no clinical trials have been published demonstrating this is an effective drug, some data suggest that this could be a useful treatment for influenza. [5] [6]
Interferons are cellular signalling factors produced in response to viral infection. Research into the use of interferons to combat influenza began in the 1960s in the Soviet Union, culminating in a trial of 14,000 subjects at the height of the Hong Kong Flu of 1969, in which those treated prophylactically with interferon were more than 50% less likely to suffer symptoms, though evidence of latent infection was present. [7] In these early studies leukocytes were collected from donated blood and exposed to a high dose of Newcastle disease, causing them to release interferons. Although interferon therapies became widespread in the Soviet Union, the method was doubted in the United States after high doses of interferon proved ineffective in trials. Though the 1969 study used 256 units of interferon, subsequent studies used up to 8.4 million units. It has since been proposed that activity of interferon is highest at low concentrations. [8] Phase III trials in Australia are planned for 2010, and initial trials are planned in the U.S. for late 2009. [9]
Interferons have also been investigated as adjuvants to enhance to effectiveness of influenza vaccines. This work was based on experiments in mice that suggested that type I interferons could enhance the effectiveness of influenza vaccines in mice. [10] However, a clinical trial in 2008 found that oral dosing of elderly patients with interferon-alpha actually reduced their immune response to an influenza vaccine. [11]
Viferon is a suppository of (non-pegylated [12] ) interferon alpha-2b, ascorbic acid (vitamin C), and tocopherol (vitamin E) which was reported in two small studies to be as effective as arbidol. [13] [14] Another interferon alfa-2b medicine, "Grippferon", nasal drops, is used for treatment and emergency prevention of Influenza and cold. [15] Its manufacturers have appealed to the WHO to consider its use against avian influenza and H1N1 Influenza 09 (Human Swine Flu), stating that it was used successfully in Russia for eight years, but that "the medical profession in Europe and the USA is not informed about this medicine". [16]
Influenza viruses can show resistance to anti-viral drugs. Like the development of bacterial antibiotic resistance, this can result from over-use of these drugs. For example, a study published in the June 2009 Issue of Nature Biotechnology emphasized the urgent need for augmentation of oseltamivir (Tamiflu) stockpiles with additional antiviral drugs including zanamivir (Relenza) based on an evaluation of the performance of these drugs in the scenario that the 2009 H1N1 'Swine Flu' neuraminidase (NA) were to acquire the tamiflu-resistance (His274Tyr) mutation which is currently widespread in seasonal H1N1 strains. [17] Yet another example is in the case of the amantadines treatment may lead to the rapid production of resistant viruses, and over-use of these drugs has probably contributed to the spread of resistance. [18] In particular, this high-level of resistance may be due to the easy availability of amantadines as part of over-the-counter cold remedies in countries such as China and Russia, [19] and their use to prevent outbreaks of influenza in farmed poultry. [20] [21]
On the other hand, a few strains resistant to neuraminidase inhibitors have emerged and circulated in the absence of much use of the drugs involved, and the frequency with which drug resistant strains appears shows little correlation with the level of use of these drugs. [22] However, laboratory studies have shown that it is possible for the use of sub-optimal doses of these drugs as a prophylactic measure might contribute to the development of drug resistance. [22]
During the United States 2005–2006 influenza season, increasing incidence of drug resistance by strain H3N2 to amantadine and rimantadine led the CDC to recommend oseltamivir as a prophylactic drug, and the use of either oseltamivir or zanamivir as treatment. [23] [24]
Antiviral drugs are prescription-only medication in the United States. Readily available over-the-counter medications do not directly affect the disease, but they do provide relief from influenza symptoms, as illustrated in the table below.
Symptom(s) | OTC Medicine |
---|---|
fever, aches, pains, sinus pressure, sore throat | analgesics |
nasal congestion, sinus pressure | decongestants |
sinus pressure, runny nose, watery eyes, cough | antihistamines |
cough | cough suppressant |
sore throat | local anesthetics |
Children and teenagers with flu symptoms (particularly fever) should avoid taking aspirin as taking aspirin in the presence of influenza infection (especially Influenzavirus B) can lead to Reye syndrome, a rare but potentially fatal disease of the brain. [26]
Several generic prescription medications might prove useful to treat a potential H5N1 avian flu outbreak, including statins, fibrates, and chloroquine. [27] [28] [29]
Malnutrition can reduce the ability of the body to resist infections and is a common cause of immunodeficiency in the developing world. [30] For instance, in a study in Ecuador, micronutrient deficiencies were found to be common in the elderly, especially for vitamin C, vitamin D, vitamin B-6, vitamin B-12, folic acid, and zinc, and these are thought to weaken the immune system or cause anemia and thus place people at greater risk of respiratory infections such as influenza. [31] Seasonal variation in sunlight exposure, which is required for vitamin D synthesis within the body, has been proposed as one of the factors accounting for the seasonality of influenza. [32] A meta-analysis of 13 studies indicated some support for adjunctive vitamin D therapy for influenza, but called for more rigorous clinical trials to settle the issue conclusively. [33]
A recent review discussing herbal and alternative medicines in influenza treatment details evidence suggesting that N-acetylcysteine, elderberry, or a combination of Eleutherococcus senticosus and Andrographis paniculata may help to shorten the course of influenza infection. The article cites more limited evidence including animal or in vitro studies to suggest possible benefit from vitamin C, DHEA, high lactoferrin whey protein, Echinacea spp., Panax quinquefolium , Larix occidentalis arabinogalactans, elenolic acid (a constituent of olive leaf extract), Astragalus membranaceus , and Isatis tinctoria or Isatis indigotica . [34] Another review assessed the quality of evidence for alternative influenza treatments, it concluded that there was "no compelling evidence" that any of these treatments were effective and that the available data on these products is particularly weak, with trials in this area suffering from many shortcomings, such as being small and poorly-designed and not testing for adverse effects. [35]
The activity of N-acetylcysteine (NAC) against influenza was first suggested in 1966. [36] In 1997 a randomized clinical trial found that volunteers taking 1.2 grams of N-acetylcysteine daily for six months were as likely as those taking placebo to be infected by influenza, but only 25% of them experienced clinical symptoms, as contrasted with 67% of the control group. The authors concluded that resistance to flu symptoms was associated with a shift in cell mediated immunity from anergy toward normoergy, as measured by the degree of skin reactivity to seven common antigens such as tetanus and Candida albicans. [37]
Several animal studies found that in a mouse model of lethal infection with a high dose of influenza, oral supplementation with one gram of N-acetylcysteine per kilogram of body weight daily increased the rate of survival, either when administered alone or in combination with the antiviral drugs ribavirin or oseltamivir. [38] [39] [40] NAC was shown to block or reduce cytopathic effects in influenza-infected macrophages, [41] to reduce DNA fragmentation (apoptosis) in equine influenza-infected canine kidney cells, [42] and to reduce RANTES production in cultured airway cells in response to influenza virus by 18%. [43] The compound has been proposed for treatment of influenza. [44]
A few news reports have suggested the use of an elderberry (Sambucus nigra) extract as a potential preventative against the 2009 flu pandemic. [45] [46] [47] [48] The preparation has been reported to reduce the duration of influenza symptoms by raising levels of cytokines. [49] [50] [51] However, the use of the preparation has been described as "imprudent" when an influenza strain causes death in healthy adults by cytokine storm leading to primary viral pneumonia. [52] The manufacturer cites a lack of evidence for cytokine-related risks, but labels the product only as an antioxidant and food supplement. [53]
The mixture of Eleutherococcus senticosus ("Siberian ginseng") and Andrographis paniculata, sold under the trade name Kan Jang, was reported in the Journal of Herbal Pharmacotherapy to outperform amantadine in reducing influenza-related sick time and complications in a Volgograd pilot study of 71 patients in 2003. [54] Prior to this, an extract of Eleutherococcus senticosus was shown to inhibit replication of RNA but not DNA viruses in vitro. [55] Among nine Chinese medicinal herbs tested, Andrographis paniculata was shown to be most effective in inhibiting RANTES secretion by H1N1 influenza infected cells in cell culture, with an IC50 for the ethanol extract of 1.2 milligrams per liter. [56]
High dietary intake of green tea (specifically, catechins and theanine that is found in tea products) has been correlated with reduced risk of contracting influenza, as well as having an antiviral effect upon types A and B. [57] [58] [59] Specifically, the high levels of epigallocatechin gallate, epicatechin gallate, and epigallocatechin present in green tea were found to inhibit influenza virus replication. [60] Additionally, topical application has been suggested to possibly act as a mild disinfectant. [61] Regular dietary intake of green tea has been associated with stronger immune response to infection, through the enhancement of T-Cell function. [62]
An alternative to vaccination used in the 1918 flu pandemic was the direct transfusion of blood, plasma, or serum from recovered patients. Though medical experiments of the era lacked some procedural refinements, eight publications from 1918 to 1925 reported that the treatment could approximately halve the mortality in hospitalized severe cases with an average case-fatality rate of 37% when untreated. [63] [64]
Bovine colostrum might also serve as a source of antibodies for some applications. [65]
Human T lymphocytes can be expanded in vitro using beads holding specific antigens to activate the cells and stimulate growth. Clonal populations of CD8+ cytotoxic T cells have been grown which carry T cell receptors specific to influenza. These work much like antibodies but are permanently bound to these cells. (See cellular immunity). High concentrations of N-acetylcysteine have been used to enhance growth of these cells. This method is still in early research. [66] [67]
Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.
Influenza A virus (IAV) is the only species of the genus Alphainfluenzavirus of the virus family Orthomyxoviridae. It is a pathogen with strains that infect birds and some mammals, as well as causing seasonal flu in humans. Mammals in which different strains of IAV circulate with sustained transmission are bats, pigs, horses and dogs; other mammals can occasionally become infected.
Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).
Zanamivir is a medication used to treat and prevent influenza caused by influenza A and influenza B viruses. It is a neuraminidase inhibitor and was developed by the Australian biotech firm Biota Holdings. It was licensed to Glaxo in 1990 and approved in the US in 1999, only for use as a treatment for influenza. In 2006, it was approved for prevention of influenza A and B. Zanamivir was the first neuraminidase inhibitor commercially developed. It is marketed by GlaxoSmithKline under the trade name Relenza as a powder for oral inhalation.
Oseltamivir, sold under the brand name Tamiflu among others, is an antiviral medication used to treat and prevent influenza A and influenza B, viruses that cause the flu. Many medical organizations recommend it in people who have complications or are at high risk of complications within 48 hours of first symptoms of infection. They recommend it to prevent infection in those at high risk, but not the general population. The Centers for Disease Control and Prevention (CDC) recommends that clinicians use their discretion to treat those at lower risk who present within 48 hours of first symptoms of infection. It is taken by mouth, either as a pill or liquid.
Rimantadine is an orally administered antiviral drug used to treat, and in rare cases prevent, influenzavirus A infection. When taken within one to two days of developing symptoms, rimantadine can shorten the duration and moderate the severity of influenza. Rimantadine can mitigate symptoms, including fever. Both rimantadine and the similar drug amantadine are derivates of adamantane. Rimantadine is found to be more effective than amantadine because when used the patient displays fewer symptoms. Rimantadine was approved by the Food and Drug Administration (FDA) in 1994.
Amantadine, sold under the brand name Gocovri among others, is a medication used to treat dyskinesia associated with parkinsonism and influenza caused by type A influenzavirus, though its use for the latter is no longer recommended because of widespread drug resistance. It is also used for a variety of other uses. The drug is taken by mouth.
Swine influenza is an infection caused by any of several types of swine influenza viruses. Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses that is endemic in pigs. As of 2009, identified SIV strains include influenza C and the subtypes of influenza A known as H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3.
Neuraminidase inhibitors (NAIs) are a class of drugs which block the neuraminidase enzyme. They are a commonly used antiviral drug type against influenza. Viral neuraminidases are essential for influenza reproduction, facilitating viral budding from the host cell. Oseltamivir (Tamiflu), zanamivir (Relenza), laninamivir (Inavir), and peramivir belong to this class. Unlike the M2 inhibitors, which work only against the influenza A virus, NAIs act against both influenza A and influenza B.
Influenza A virus subtype H1N1 (A/H1N1) is a subtype of influenza A virus (IAV). Some human-adapted strains of H1N1 are endemic in humans and are one cause of seasonal influenza (flu). Other strains of H1N1 are endemic in pigs and in birds. Subtypes of IAV are defined by the combination of the antigenic H and N proteins in the viral envelope; for example, "H1N1" designates an IAV subtype that has a type-1 hemagglutinin (H) protein and a type-1 neuraminidase (N) protein.
An influenza pandemic is an epidemic of an influenza virus that spreads across a large region and infects a large proportion of the population. There have been five major influenza pandemics in the last 140 years, with the 1918 flu pandemic being the most severe; this is estimated to have been responsible for the deaths of 50–100 million people. The 2009 swine flu pandemic resulted in under 300,000 deaths and is considered relatively mild. These pandemics occur irregularly.
Peramivir is an antiviral drug developed by BioCryst Pharmaceuticals for the treatment of influenza. Peramivir is a neuraminidase inhibitor, acting as a transition-state analogue inhibitor of influenza neuraminidase and thereby preventing new viruses from emerging from infected cells. It is approved for intravenous administration.
Transmission and infection of H5N1 from infected avian sources to humans has been a concern since the first documented case of human infection in 1997, due to the global spread of H5N1 that constitutes a pandemic threat.
The genetic structure of H5N1, a highly pathogenic avian influenza virus, is characterized by a segmented RNA genome consisting of eight gene segments that encode for various viral proteins essential for replication, host adaptation, and immune evasion.
Umifenovir, sold under the brand name Arbidol, is sold and used as an antiviral medication for influenza in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.
Nitazoxanide, sold under the brand name Alinia among others, is a broad-spectrum antiparasitic and broad-spectrum antiviral medication that is used in medicine for the treatment of various helminthic, protozoal, and viral infections. It is indicated for the treatment of infection by Cryptosporidium parvum and Giardia lamblia in immunocompetent individuals and has been repurposed for the treatment of influenza. Nitazoxanide has also been shown to have in vitro antiparasitic activity and clinical treatment efficacy for infections caused by other protozoa and helminths; evidence as of 2014 suggested that it possesses efficacy in treating a number of viral infections as well.
Pandemrix is an influenza vaccine for influenza pandemics, such as the 2009 flu pandemic. The vaccine was developed by GlaxoSmithKline (GSK) and patented in September 2006.
Influenza, commonly known as the flu, is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin one to four days after exposure to the virus and last for about two to eight days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia from the virus or a subsequent bacterial infection. Other complications include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.
The 2009 swine flu pandemic, caused by the H1N1/swine flu/influenza virus and declared by the World Health Organization (WHO) from June 2009 to August 2010, was the third recent flu pandemic involving the H1N1 virus. The first identified human case was in La Gloria, Mexico, a rural town in Veracruz. The virus appeared to be a new strain of H1N1 that resulted from a previous triple reassortment of bird, swine, and human flu viruses which further combined with a Eurasian pig flu virus, leading to the term "swine flu".
The pandemic H1N1/09 virus is a swine origin influenza A virus subtype H1N1 strain that was responsible for the 2009 swine flu pandemic. This strain is often called swine flu by the public media due to the prevailing belief that it originated in pigs. The virus is believed to have originated around September 2008 in central Mexico.
{{cite web}}
: CS1 maint: multiple names: authors list (link) – see also Cummins, Joseph M.; Krakowka, G. Steven; Thompson, Chad G. (January 2005). "Systemic effects of interferons after oral administration in animals and humans" (PDF). American Journal of Veterinary Research. 66 (1): 164–176. doi:10.2460/ajvr.2005.66.164. PMID 15691053.{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link)