Tyrosine phenol-lyase

Last updated
tyrosine phenol-lyase
Identifiers
EC no. 4.1.99.2
CAS no. 9059-31-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme tyrosine phenol-lyase (EC 4.1.99.2) catalyzes the chemical reaction

L-tyrosine + H2O phenol + pyruvate + NH3

This enzyme belongs to the family of lyases, specifically in the "catch-all" class of carbon-carbon lyases. The systematic name of this enzyme class is L-tyrosine phenol-lyase (deaminating; pyruvate-forming). Other names in common use include beta-tyrosinase, and L-tyrosine phenol-lyase (deaminating). This enzyme participates in tyrosine metabolism and nitrogen metabolism. It employs one cofactor, pyridoxal phosphate.

Structural studies

As of late 2007, five structures have been solved for this class of enzyme, with PDB accession codes 1C7G, 1TPL, 2EZ1, 2EZ2, and 2TPL.

Related Research Articles

<span class="mw-page-title-main">Cystathionine gamma-lyase</span> Protein-coding gene in the species Homo sapiens

The enzyme cystathionine γ-lyase (EC 4.4.1.1, CTH or CSE; also cystathionase; systematic name L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)) breaks down cystathionine into cysteine, 2-oxobutanoate (α-ketobutyrate), and ammonia:

<span class="mw-page-title-main">Amine oxidase (copper-containing)</span>

Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes which includes both primary-amine oxidase and diamine oxidase; these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. They act as a disulphide-linked homodimer. They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor:

The enzyme 3-chloro-D-alanine dehydrochlorinase (EC 4.5.1.2) catalyzes the reaction

The enzyme cysteine-S-conjugate β-lyase (EC 4.4.1.13) catalyzes the chemical reaction

The enzyme D-cysteine desulfhydrase (EC 4.4.1.15) catalyzes the chemical reaction

The enzyme diaminopropionate ammonia-lyase (EC 4.3.1.15) catalyzes the chemical reaction

The enzyme D-serine ammonia-lyase (EC 4.3.1.18), with systematic name D-serine ammonia-lyase (pyruvate-forming), catalyzes the chemical reaction

<span class="mw-page-title-main">L-serine ammonia-lyase</span>

The enzyme L-serine ammonia-lyase (EC 4.3.1.17) catalyzes the chemical reaction

<span class="mw-page-title-main">Phenylalanine ammonia-lyase</span>

The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.:

In enzymology, a S-alkylcysteine lyase is an enzyme that catalyzes the chemical reaction

The enzyme 4-hydroxy-2-oxoglutarate aldolase catalyzes the chemical reaction

The enzyme 4-hydroxy-4-methyl-2-oxoglutarate aldolase catalyzes the chemical reaction

4-amino-4-deoxychorismate lyase is an enzyme that participates in folate biosynthesis by catalyzing the production of PABA by the following reaction

<span class="mw-page-title-main">Methylisocitrate lyase</span>

The enzyme methylisocitrate lyase catalyzes the chemical reaction

The enzyme phosphatidylserine decarboxylase (EC 4.1.1.65) catalyzes the chemical reaction

<span class="mw-page-title-main">Threonine aldolase</span>

The enzyme threonine aldolase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Tryptophanase</span> Enzyme that converts tryptophan into indole

The enzyme tryptophanase (EC 4.1.99.1) catalyzes the chemical reaction

The enzyme ethanolamine-phosphate phospho-lyase (EC 4.2.3.2) catalyzes the chemical reaction

<span class="mw-page-title-main">Threonine synthase</span>

The enzyme threonine synthase (EC 4.2.3.1) catalyzes the chemical reaction

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

References