Vanguard TV-1

Last updated

Vanguard TV-1
Vanguard TV-1 launched.jpg
The launch of the Vanguard TV-1 rocket
NamesVanguard Test Vehicle-1
Vanguard Test Vehicle-One
Mission type Vanguard test flight
Operator Naval Research Laboratory
Mission durationSuborbital flight
Start of mission
Launch date1 May 1957, 06:09 GMT
Rocket Vanguard TV-1
Launch site Cape Canaveral, LC-18A
Contractor Glenn L. Martin Company
End of mission
Decay dateSuborbital flight
Orbital parameters
Altitude203.6 km (126.5 mi)
 

Vanguard TV-1, also called Vanguard Test Vehicle-One, was the second sub-orbital test flight of a Vanguard rocket as part of the Project Vanguard. Vanguard TV-1 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956.

Contents

Project Vanguard was a program managed by the United States Naval Research Laboratory (NRL), and designed and built by the Glenn L. Martin Company (now Lockheed-Martin), which intended to launch the first artificial satellite into Earth orbit using a Vanguard rocket [1] as the launch vehicle from Cape Canaveral Missile Annex, Florida.

Vanguard TV-1 arrived at Cape Canaveral in February 1957. TV-1 was a two-stage rocket. Vanguard TV-1 used a liquid rocket from a modified Viking rocket for the first stage. The second stage was made by Grand Central Rocket Company. The second stage was a prototype solid-propellant rocket. This solid-propellant second stage later became the third stage of the final three-stage Vanguard vehicle. Three stages are needed to put a satellite in orbit, the goal of Vanguard.

Vanguard TV-1 lifted off on 1 May 1957 at 01:29local time (06:29 GMT) from Cape Canaveral from launch pad LC-18A. Launch pad 18A was an older Viking launch stand that was shipped from White Sands Missile Range for use at the Cape Canaveral. Pad 18A was also used on Vanguard Test Vehicle-Zero (Vanguard TV-0).

The main goal of Vanguard TV-1 was to test the solid-propellant rocket. The solid-propellant rocket needed to spin-up, separate from the first-stage booster, ignite, provide a proper propulsion and trajectory. Another goal was to test the techniques and equipment used to launch and track the rocket. The telemetry received during flight would record the proper propulsion and trajectory. The telemetry was picked up at the Air Force Missile Test Center's (AFMTC) tracking station. Vanguard TV-1 was successful, the two stage rocket achieved an altitude of 195 km (121 mi) and a down range of 726 km (451 mi), landing in the Atlantic Ocean. [2] [3] [4] [5] [6]

With Vanguard TV-0 and Vanguard TV-1 success, the next sub-orbital test flight, Vanguard TV-2, was launched in October 1957.

Background

Vanguard TV-0 and Vanguard TV-1 success was an important part of the Space Race. The Space Race started between United States and the Soviet Union at the end of World War II, as a race began to retrieve as many V-2 rockets and Nazi Germany V-2 staff as possible. [7] Three hundred rail-car loads of V-2 rocket weapons and parts were captured and shipped to the United States, also 126 of the principal designers of the V-2, including Wernher von Braun and Walter Dornberger, went to America. Von Braun, his brother Magnus von Braun, and seven others decided to surrender to the United States military in Operation Paperclip to ensure they were not captured by the advancing Soviets or shot dead by the Nazis to prevent their capture. [8] Thus the V-2 program started the Space Race, the V-2 could not orbit, but could reach a height of 88 km (55 mi) on long range trajectory and up to 206 km (128 mi) if launched vertically. [9] [10] [11]

Due to later problems with Vanguard it was not the first rocket to put into orbit an unmanned satellite. The first small-lift launch vehicle was the Sputnik rocket, it put into orbit an unmanned orbital carrier rocket designed by Sergei Korolev in the Soviet Union, derived from the R-7 Semyorka ICBM. On 4 October 1957, the Sputnik rocket was used to perform the world's first satellite launch, placing Sputnik 1 satellite into a low Earth orbit. [12] [13] [14]

The United States responded by launching the Vanguard rocket, [1] [15] that was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket launched on 1 February 1958. Thus Vanguard 1 was the second successful U.S. orbital launch. Thus started the Space Race, that gave the drive to put men on the Moon with the Apollo program. [16] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Explorer 1</span> First satellite launched by the United States (1958)

Explorer 1 was the first satellite launched by the United States in 1958 and was part of the U.S. participation in the International Geophysical Year (IGY). The mission followed the first two satellites the previous year; the Soviet Union's Sputnik 1 and Sputnik 2, beginning the Cold War Space Race between the two nations.

<span class="mw-page-title-main">Jupiter-C</span> Part of the Redstone rocket family

The Jupiter-C was an American research and development vehicle developed from the Jupiter-A. Jupiter-C was used for three uncrewed sub-orbital spaceflights in 1956 and 1957 to test re-entry nosecones that were later to be deployed on the more advanced PGM-19 Jupiter mobile missile. The recovered nosecone was displayed in the Oval Office as part of President Dwight D. Eisenhower's televised speech on November 7, 1957.

<span class="mw-page-title-main">Juno I</span> Four-stage American expendable launch vehicle (1958–59)

The Juno I was a four-stage American space launch vehicle, used to launch lightweight payloads into low Earth orbit. The launch vehicle was used between January 1958 to December 1959. The launch vehicle is a member of the Redstone launch vehicle family, and was derived from the Jupiter-C sounding rocket. It is commonly confused with the Juno II launch vehicle, which was derived from the PGM-19 Jupiter medium-range ballistic missile. In 1958, a Juno I launch vehicle was used to launch America's first satellite, Explorer 1.

<span class="mw-page-title-main">Vanguard TV-3</span> U.S. satellite in 1957

Vanguard TV-3, was the first attempt of the United States to launch a satellite into orbit around the Earth, after the successful Soviet launches of Sputnik 1 and Sputnik 2. Vanguard TV-3 was a small satellite designed to test the launch capabilities of the three-stage Vanguard and study the effects of the environment on a satellite and its systems in Earth orbit. It was also to be used to obtain geodetic measurements through orbit analysis. Solar cells on Vanguard TV-3 were manufactured by Bell Laboratories.

<span class="mw-page-title-main">Vanguard 1</span> American satellite launched in 1958; oldest manmade object currently in Earth orbit

Vanguard 1 is an American satellite that was the fourth artificial Earth-orbiting satellite to be successfully launched, following Sputnik 1, Sputnik 2, and Explorer 1. It was launched 17 March 1958. Vanguard 1 was the first satellite to have solar electric power. Although communications with the satellite were lost in 1964, it remains the oldest human-made object still in orbit, together with the upper stage of its launch vehicle.

Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket. as the launch vehicle from Cape Canaveral Missile Annex, Florida.

<span class="mw-page-title-main">Vanguard 2</span> US Navy satellite launched in 1959

Vanguard 2 is an Earth-orbiting satellite launched 17 February 1959 at 15:55:02 GMT, aboard a Vanguard SLV-4 rocket as part of the United States Navy's Project Vanguard. The satellite was designed to measure cloud cover distribution over the daylight portion of its orbit, for a period of 19 days, and to provide information on the density of the atmosphere for the lifetime of its orbit. As the first weather satellite and one of the first orbital space missions, the launch of Vanguard 2 was an important milestone in the Space Race between the United States and the Soviet Union. Vanguard 2 remains in orbit.

<span class="mw-page-title-main">Vanguard 3</span>

Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).

Explorer 2 was an American unmanned space mission within the Explorer program. Intended to be a repetition of the previous Explorer 1 mission, which placed a satellite into medium Earth orbit, the spacecraft was unable to reach orbit due to a failure in the launch vehicle during launch.

Explorer 3 was an American artificial satellite launched into medium Earth orbit in 1958. It was the second successful launch in the Explorer program, and was nearly identical to the first U.S. satellite Explorer 1 in its design and mission.

The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.

<span class="mw-page-title-main">Vanguard TV-3BU</span> Second flight of the American Vanguard rocket

Vanguard TV-3BU, also called Vanguard Test Vehicle-Three Backup, was the second flight of the American Vanguard rocket. An unsuccessful attempt to place an unnamed satellite, Vanguard 1B, into orbit, the rocket was launched on 5 February 1958. It was launched from LC-18A at the Cape Canaveral Air Force Station. Fifty-seven seconds after launch, control of the vehicle was lost, and it failed to achieve orbit. At 57 seconds, the booster suddenly pitched down. The skinny second stage broke in half from aerodynamic stress, causing the Vanguard to tumble end-over-end before a range safety officer sent the destruct command. The cause of the failure was attributed to a spurious guidance signal that caused the first stage to perform unintended pitch maneuvers. Vanguard TV-3BU only reached an altitude of 6.1 km (3.8 mi), the goal was 3,840 km (2,390 mi).

<span class="mw-page-title-main">Vanguard TV-0</span>

Vanguard TV-0, also called Vanguard Test Vehicle-Zero, was the first sub-orbital test flight of a Viking rocket as part of the Project Vanguard.

<span class="mw-page-title-main">Vanguard TV-2</span> Suborbital rocket test flight

Vanguard TV-2, also called Vanguard Test Vehicle-Two, was the third suborbital test flight of a Vanguard rocket as part of Project Vanguard. Successful TV-2 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956 and Vanguard TV-1 a two-stage rocket launched in May 1957.

<span class="mw-page-title-main">Vanguard TV-5</span> Failed rocket launch

Vanguard TV-5, also called Vanguard Test Vehicle-Five, was a failed flight of the American Vanguard rocket following the successful launch of Vanguard 1 on Vanguard TV-4. Vanguard TV-5 launched on 29 April 1958 at 02:53:00 GMT, from Launch Complex 18A at the Cape Canaveral Air Force Station. The rocket was unsuccessful in its attempt to place an unnamed satellite into orbit.

<span class="mw-page-title-main">Vanguard SLV-1</span> Failed rocket launch

Vanguard SLV-1, also called Vanguard Satellite Launch Vehicle-1 was hoped to be the second successful flight of the American Vanguard rocket following the successful launch of the Vanguard 1 satellite on rocket Vanguard TV-4 in March 1958.

<span class="mw-page-title-main">Vanguard SLV-2</span> Failed rocket launch

Vanguard SLV-2, also called Vanguard Satellite Launch Vehicle-2 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

<span class="mw-page-title-main">Vanguard SLV-3</span> Failed rocket launch

Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

<span class="mw-page-title-main">Vanguard SLV-5</span> Failed rocket launch

Vanguard SLV-5, also called Vanguard Satellite Launch Vehicle-Five hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4.

<span class="mw-page-title-main">Vanguard SLV-6</span> Failed rocket launch

Vanguard SLV-6, also called Vanguard Satellite Launch Vehicle-Six, hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4. Vanguard Satellite Launch Vehicle-6 (SLV-6) was designed to carry a small spherical satellite into Earth orbit to study solar heating of Earth and the heat balance. A faulty second stage pressure valve caused a mission failure.

References

  1. 1 2 "The Vanguard Satellite Launching Vehicle — An Engineering Summary", B. Klawans, April 1960, 212 pages Martin Company Engineering Report No 11022 PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. "NASA History, Chapter 10". history.nasa.gov. NASA. Retrieved 24 December 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. Vanguard: A History, By Constance McLaughlin Green and Milton Lomask PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "U.S. space-rocket liquid propellant engines". b14643.de. Archived from the original on 1 November 2015. Retrieved 24 June 2015.
  5. Winter, Frank H. (1990). "Chapter 3 — Rockets Enter the Space Age". Rockets Into Space . Harvard University Press. p.  66 . Retrieved 24 June 2015.
  6. Vanguard: A History, page 282, By Constance McLaughlin Green and Milton Lomask PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. "We Want with the West", Time Magazine, 9 December 1946
  8. "Wernher von Braun" . Retrieved 4 July 2009.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. "Bumper Project". White Sands History - Fact Sheets and Articles. U.S. Army. Archived from the original on 10 January 2008. Retrieved 2 December 2007.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  10. "Long-range" in the context of the time. See NASA history article Archived 2009-01-07 at the Wayback Machine PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. Neufeld, Michael J. (1995). The Rocket and the Reich: Peenemünde and the Coming of the Ballistic Missile Era . New York: The Free Press. pp.  158, 160–2, 190.
  12. "Display: Sputnik 1 1957-001B". nssdc.gsfc.nasa.gov. NASA. 14 May 2020. Retrieved 8 February 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. "Sputnik launch vehicle 8K71PS (M1-1PS)". Russian Space Web. Retrieved 24 December 2015.
  14. (in Russian) Sputnik Rocket
  15. "Vanguard Project - U.S. Naval Research Laboratory". nrl.navy.mil. NRL. Retrieved 24 December 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  16. "Memorandum for Vice President". The White House (Memorandum). Boston, Maine: John F. Kennedy Presidential Library and Museum. 20 April 1961. Retrieved 1 August 2013.
  17. Launius, Roger D. (July 1994). "President John F. Kennedy Memo for Vice President, 20 April 1961" (PDF). Apollo: A Retrospective Analysis. Monographs in Aerospace History Number 3. Washington, D.C.: NASA. OCLC   31825096 . Retrieved 1 August 2013. Key Apollo Source Documents PD-icon.svg This article incorporates text from this source, which is in the public domain .

Further reading