Vanguard TV-0

Last updated

Vanguard TV-0
Vanguard rocket-04.jpg
The launch of the Vanguard TV-0 rocket
NamesVanguard Test Vehicle-0
Vanguard Test Vehicle-Zero
Mission type Vanguard test flight
Operator Naval Research Laboratory
Mission durationSuborbital flight
Start of mission
Launch date8 December 1956, 06:05 GMT
Rocket Vanguard TV-0
Launch site Cape Canaveral, LC-18A
Contractor Glenn L. Martin Company
End of mission
Decay dateSuborbital flight
Orbital parameters
Altitude203.6 km (126.5 mi)
 

Vanguard TV-0, also called Vanguard Test Vehicle-Zero, was the first sub-orbital test flight of a Viking rocket as part of the Project Vanguard.

Contents

Project Vanguard was a program managed by the United States Naval Research Laboratory (NRL), and designed and built by the Glenn L. Martin Company (now Lockheed-Martin), which intended to launch the first artificial satellite into Earth orbit using a Vanguard rocket, powered by a basic design for large liquid rockets. [1] as the launch vehicle from Cape Canaveral Missile Annex, Florida.

Background

Vanguard TV-0's success was an important part of the Space Race. The Space Race started between United States and the Soviet Union at the end of World War II, as a race began to retrieve as many V-2 rockets and Nazi Germany V-2 staff as possible. [2] Three hundred rail-car loads of V-2 rocket weapons and parts were captured and shipped to the United States, also 126 of the principal designers of the V-2, including Wernher von Braun and Walter Dornberger, went to America. von Braun, his brother Magnus von Braun, and seven others decided to surrender to the United States military in Operation Paperclip to ensure they were not captured by the advancing Soviets or shot dead by the Nazis to prevent their capture. [3] Thus the V-2 program started the Space Race, the V-2 could not orbit, but could reach a height of 88 km (55 mi) on long range trajectory and up to 206 km (128 mi) if launched vertically. [4] [5] [6]

Due to later problems with Vanguard it was not the first rocket to put into orbit an unmanned satellite. The first small-lift launch vehicle was the Sputnik rocket, it put into orbit an unmanned orbital carrier rocket designed by Sergei Korolev in the Soviet Union, derived from the R-7 Semyorka ICBM. On 4 October 1957, the Sputnik rocket was used to perform the world's first satellite launch, placing Sputnik 1 satellite into a low Earth orbit. [7] [8] [9]

The United States responded by launching the Vanguard rocket, [1] [10] that was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket launched on 1 February 1958. Thus Vanguard 1 was the second successful U.S. orbital launch. Thus started the Space Race, that gave the drive to put men on the Moon with the Apollo program. [11] [12]

Launch

Ordinarily the countdown began five hours before launch at T-300 minutes. At T-255 minutes, the technicians turned on the satellite and checked it. At T-95 minutes, liquid oxygen (LOX) began pouring into the oxidizer tanks of the vehicle. At T-65 minutes, the gantry crane retired from the flight firing structure. At T-3 minutes, the time-unit ped for the countdown changed to seconds (T-180 seconds), and instrumentation men shifted the telemetry, radar beacons, and command receivers to internal power. At T-30 seconds, the cooling-air umbilical dropped and the LOX-vents on the vehicle closed. At T-0, the fire switch closed, the electrical umbilical dropped from the vehicle, and about six seconds later (T+6), if all was well, the vehicle lifted off. [13]

In October 1956, Viking 13, refurbished and renamed Vanguard Test Vehicle-Zero, or TV-0, arrived at Cape Canaveral. In November 1956, it was transported to pad 18A. Vanguard TV-0 was only a one-stage test flight. It was launched on 8 December 1956 at 01:05 local time (06:05 GMT) at Cape Canaveral from launch pad LC-18A. A Viking launch stand was shipped from White Sands Missile Range for use at the Cape Canaveral. The one-stage test flight was to prepare for the late launch of the full three-stage Vanguard. One of the goals of the test was to test the new Minitrack transmitter used as part of the tracking systems. Shortly after two minutes after lift off a small telemetry antennas unrolled from the rocket transmitting an oscillator's beep. The beep was picked up at the Air Force Missile Test Center's (AFMTC) tracking station.

Vanguard TV-0 was very successful, the one-stage rocket achieved an altitude of 203.6 km (126.5 mi) and a down range of 157.1 km (97.6 mi), landing in the Atlantic Ocean. Vanguard TV-0 was followed by Vanguard TV-1. Vanguard TV-1 was a successful two-stage prototype rocket. [14] [13] [15] [16] With Vanguard TV-0 success, the next suborbital test flight, Vanguard TV-1, was launched in May 1957.

See also

Related Research Articles

<span class="mw-page-title-main">Explorer 1</span> First satellite launched by the United States (1958)

Explorer 1 was the first satellite launched by the United States in 1958 and was part of the U.S. participation in the International Geophysical Year (IGY). The mission followed the first two satellites, both launched by the Soviet Union during the previous year, Sputnik 1 and Sputnik 2. This began a Space Race during the Cold War between the two nations.

<span class="mw-page-title-main">Juno I</span> Four-stage American expendable launch vehicle (1958–59)

The Juno I was a four-stage American space launch vehicle, used to launch lightweight payloads into low Earth orbit. The launch vehicle was used between January 1958 to December 1959. The launch vehicle is a member of the Redstone launch vehicle family, and was derived from the Jupiter-C sounding rocket. It is commonly confused with the Juno II launch vehicle, which was derived from the PGM-19 Jupiter medium-range ballistic missile. In 1958, a Juno I launch vehicle was used to launch America's first satellite, Explorer 1.

<span class="mw-page-title-main">Vanguard TV-3</span> U.S. satellite in 1957

Vanguard TV-3, was the first attempt of the United States to launch a satellite into orbit around the Earth, after the successful Soviet launches of Sputnik 1 and Sputnik 2. Vanguard TV-3 was a small satellite designed to test the launch capabilities of the three-stage Vanguard and study the effects of the environment on a satellite and its systems in Earth orbit. It was also to be used to obtain geodetic measurements through orbit analysis. Solar cells on Vanguard TV-3 were manufactured by Bell Laboratories.

Project Vanguard was a program managed by the United States Navy Naval Research Laboratory (NRL), which intended to launch the first artificial satellite into low Earth orbit using a Vanguard rocket. as the launch vehicle from Cape Canaveral Missile Annex, Florida.

<span class="mw-page-title-main">Cape Canaveral Space Force Station</span> Military rocket launch site in Florida

Cape Canaveral Space Force Station (CCSFS) is an installation of the United States Space Force's Space Launch Delta 45, located on Cape Canaveral in Brevard County, Florida.

<span class="mw-page-title-main">Vanguard 2</span> US Navy satellite launched in 1959

Vanguard 2 is an Earth-orbiting satellite launched 17 February 1959 at 15:55:02 GMT, aboard a Vanguard SLV-4 rocket as part of the United States Navy's Project Vanguard. The satellite was designed to measure cloud cover distribution over the daylight portion of its orbit, for a period of 19 days, and to provide information on the density of the atmosphere for the lifetime of its orbit. As the first weather satellite and one of the first orbital space missions, the launch of Vanguard 2 was an important milestone in the Space Race between the United States and the Soviet Union. Vanguard 2 remains in orbit.

<span class="mw-page-title-main">Vanguard 3</span>

Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).

Explorer 3 was an American artificial satellite launched into medium Earth orbit in 1958. It was the second successful launch in the Explorer program, and was nearly identical to the first U.S. satellite Explorer 1 in its design and mission.

The Vanguard rocket was intended to be the first launch vehicle the United States would use to place a satellite into orbit. Instead, the Sputnik crisis caused by the surprise launch of Sputnik 1 led the U.S., after the failure of Vanguard TV-3, to quickly orbit the Explorer 1 satellite using a Juno I rocket, making Vanguard 1 the second successful U.S. orbital launch.

<span class="mw-page-title-main">SCORE (satellite)</span> First ever communications satellite

SCORE was the world's first purpose-built communications satellite. Launched aboard an American Atlas rocket on December 18, 1958, SCORE provided the second test of a communications relay system in space, the first broadcast of a human voice from space, and the first successful use of the Atlas as a launch vehicle. It captured world attention by broadcasting a Christmas message via shortwave radio from U.S. President Dwight D. Eisenhower through an on-board tape recorder. The satellite was popularly dubbed "The Talking Atlas" as well as "Chatterbox". SCORE, as a geopolitical strategy, placed the United States at an even technological par with the Soviet Union as a highly functional response to the Sputnik 1 and Sputnik 2 satellites.

Lockheed Martin Space is one of the four major business divisions of Lockheed Martin. It has its headquarters in Littleton, Colorado, with additional sites in Valley Forge, Pennsylvania; Sunnyvale, California; Santa Cruz, California; Huntsville, Alabama; and elsewhere in the United States and United Kingdom. The division currently employs about 20,000 people, and its most notable products are commercial and military satellites, space probes, missile defense systems, NASA's Orion spacecraft, and the Space Shuttle external tank.

<span class="mw-page-title-main">Milton Rosen</span>

Milton William Rosen was a United States Navy engineer and project manager in the US space program between the end of World War II and the early days of the Apollo Program. He led development of the Viking and Vanguard rockets, and was influential in the critical decisions early in NASA's history that led to the definition of the Saturn rockets, which were central to the eventual success of the American Moon landing program. He died of prostate cancer in 2014.

The Space Tracking and Surveillance System was a pair of satellites developed by the United States Missile Defense Agency (MDA) to research the space-based detection and tracking of ballistic missiles. Data from STSS satellites could allow interceptors to engage incoming missiles earlier in flight than would be possible with other missile detection systems. The STSS program began in 2001, when the "SBIRS Low" program was transferred to MDA from the United States Air Force. In December 2002, SBIRS Low Research & Development was renamed Space Tracking and Surveillance System (STSS).

<span class="mw-page-title-main">Vanguard TV-3BU</span> Second flight of the American Vanguard rocket

Vanguard TV-3BU, also called Vanguard Test Vehicle-Three Backup, was the second flight of the American Vanguard rocket. An unsuccessful attempt to place an unnamed satellite, Vanguard 1B, into orbit, the rocket was launched on 5 February 1958. It was launched from LC-18A at the Cape Canaveral Air Force Station. Fifty-seven seconds after launch, control of the vehicle was lost, and it failed to achieve orbit. At 57 seconds, the booster suddenly pitched down. The skinny second stage broke in half from aerodynamic stress, causing the Vanguard to tumble end-over-end before a range safety officer sent the destruct command. The cause of the failure was attributed to a spurious guidance signal that caused the first stage to perform unintended pitch maneuvers. Vanguard TV-3BU only reached an altitude of 6.1 km (3.8 mi), the goal was 3,840 km (2,390 mi).

<span class="mw-page-title-main">Vanguard TV-1</span> Rocket as a part of Project Vanguard

Vanguard TV-1, also called Vanguard Test Vehicle-One, was the second sub-orbital test flight of a Vanguard rocket as part of the Project Vanguard. Vanguard TV-1 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956.

<span class="mw-page-title-main">Vanguard TV-2</span> Suborbital rocket test flight

Vanguard TV-2, also called Vanguard Test Vehicle-Two, was the third suborbital test flight of a Vanguard rocket as part of Project Vanguard. Successful TV-2 followed the successful launch of Vanguard TV-0 a one-stage rocket launched in December 1956 and Vanguard TV-1 a two-stage rocket launched in May 1957.

<span class="mw-page-title-main">Vanguard TV-5</span> Failed rocket launch

Vanguard TV-5, also called Vanguard Test Vehicle-Five, was a failed flight of the American Vanguard rocket following the successful launch of Vanguard 1 on Vanguard TV-4. Vanguard TV-5 launched on 29 April 1958 at 02:53:00 GMT, from Launch Complex 18A at the Cape Canaveral Air Force Station. The rocket was unsuccessful in its attempt to place an unnamed satellite into orbit.

<span class="mw-page-title-main">Vanguard SLV-2</span> Failed rocket launch

Vanguard SLV-2, also called Vanguard Satellite Launch Vehicle-2 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

<span class="mw-page-title-main">Vanguard SLV-3</span> Failed rocket launch

Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

<span class="mw-page-title-main">Vanguard SLV-5</span> Failed rocket launch

Vanguard SLV-5, also called Vanguard Satellite Launch Vehicle-Five hoped to be the third successful flight of the American Vanguard rocket following the successful Vanguard 2 satellite on rocket Vanguard SLV-4.

References

  1. 1 2 "The Vanguard Satellite Launching Vehicle — An Engineering Summary" B. Klawans April 1960, 212 pages Martin Company Engineering Report No 11022, PDF of an optical copy PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. "We Want with the West", Time Magazine, 9 December 1946
  3. "Wernher von Braun" . Retrieved 4 July 2009.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. "Bumper Project". White Sands History - Fact Sheets and Articles. U.S. Army. Archived from the original on 10 January 2008. Retrieved 2 December 2007.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "Long-range" in the context of the time. See NASA history article Archived 7 January 2009 at the Wayback Machine PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. Neufeld, Michael J. (1995). The Rocket and the Reich: Peenemünde and the Coming of the Ballistic Missile Era . New York: The Free Press. pp.  158, 160–2, 190.
  7. "Display: Sputnik 1 1957-001B". nssdc.gsfc.nasa.gov. NASA. 14 May 2020. Retrieved 8 February 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. "Sputnik launch vehicle 8K71PS (M1-1PS)". russianspaceweb.com. Russian Space Web. Retrieved 24 December 2015.
  9. (in Russian) Sputnik Rocket
  10. "Vanguard Project - U.S. Naval Research Laboratory". nrl.navy.mil. NRL. Retrieved 24 December 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "Memorandum for Vice President". The White House (Memorandum). Boston, Maine: John F. Kennedy Presidential Library and Museum. 20 April 1961. Retrieved 1 August 2013.
  12. Launius, Roger D. (July 1994). "President John F. Kennedy Memo for Vice President, 20 April 1961" (PDF). Apollo: A Retrospective Analysis. Monographs in Aerospace History Number 3. NASA. OCLC   31825096 . Retrieved 1 August 2013. Key Apollo Source Documents PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. 1 2 Constance McLaughlin Green and Milton Lomask (1970). "Chapter 10 - Early Test Firings". Vanguard: A History. NASA SP-4202. pp. 165–183.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  14. "NASA History, Chapter 10". history.nasa.gov. NASA. Retrieved 24 December 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  15. "U.S. space-rocket liquid propellant engines". b14643.de. Archived from the original on 1 November 2015. Retrieved 24 June 2015.
  16. Winter, Frank H. (1990). "Chapter 3 – Rockets Enter the Space Age". Rockets into Space . Harvard University Press. p.  66 . Retrieved 24 June 2015.

Further reading